

ТЕХНИЧЕСКИ УНИВЕРСИТЕТ – СОФИЯ

Машиностроителен факултет

Катедра Автоматизация на дискретното производство

маг. инж. Борян Чавдаров Владимиров

ПРОГРАМИРАНЕ НА ПРОМИШЛЕНИ РОБОТИ С

ИЗПОЛЗВАНЕ НА API

А В Т О Р Е Ф Е Р А Т
на дисертация за придобиване на образователна и научна степен

"ДОКТОР"

Област: 5. Технически науки

Професионално направление: 5.1 Машинно инженерство

Научна специалност: Автоматизация на производството.

Научен ръководител: проф. д-р Стилиян Николов

СОФИЯ, 2025 г.

2

Дисертационният труд е обсъден и насочен за защита от Катедрения съвет

на катедра „Автоматизация на дискретното производство“ към

Машиностроителен факултет на ТУ-София на редовно заседание, проведено

на 10.11.2025 г..

Публичната защита на дисертационния труд ще се състои на 29.01.2025 г.

oт 13.00 часа в Конферентната зала на БИЦ на Технически университет –

София на открито заседание на научното жури, определено със заповед № ОЖ-

5.1-104 / 04.12.2025 г. на Ректора на ТУ-София в състав:

1. проф. д-р Панчо Томов – председател

2. доц. д-р Велизар Захаринов – научен секретар

3. проф. д-р Младен Милушев

4. проф. д-р Николай Стоименов

5. доц. д-р Иванка Пеева

Рецензенти:

1. доц. д-р Велизар Захаринов

2. доц. д-р Иванка Пеева

Материалите по защитата са на разположение на интересуващите се в

канцеларията на Машиностроителен факултет на ТУ-София, блок № 4,

кабинет № 3242.

Дисертантът е задочен докторант към катедра „Автоматизация на

дискретното производство“ на Машиностроителен факултет. Изследванията

по дисертационната разработка са направени от автора, като някои от тях са

подкрепени от научноизследователски проекти.

Автор: маг. инж. Борян Владимиров
Заглавие: Програмиране на промишлени роботи с използване на API

Тираж: 30 броя

Отпечатано в ИПК на Технически университет – София

3

I. ОБЩА ХАРАКТЕРИСТИКА НА ДИСЕРТАЦИОННИЯ ТРУД

Актуалност на проблема

Съвременните промишлени роботи (ПР), са високо енергийно ефективни,

с възможност за изпълнение на широк кръг задачи. Това прави все по-

привлекателно и икономически изгодно тяхното използване в различни

области на индустрията, осигуряващо автоматизиране на различни

производствени дейности и безопасна работна среда.

Развитието на компютърните технологии предостави възможност, чрез

използването на Application Programming Interface (API), за създаване на

потребителски приложения, които да автоматизират разработването на

управляващи програми и техния трансфер към използваните ПР.

Всичко това, наред с необходимостта от високо квалифициран персонал за

програмирането на ПР, прави актуални въпросите свързани с изследването на

възможностите за автоматизирано и отдалечено програмиране на ПР.

Цел на дисертационния труд, основни задачи и методи за изследване

Цел на настоящата дисертационна работа е изследване на възможностите

предоставяни от различни компютърни системи при разработването на УП за

ПР, техния трансфер към ПР и възможностите за използване на API при

работата на тези системи.

За изпълнението на тази цел се предвижда решаването на следните задачи:

1. Анализ на методите за програмиране на ПР

2. Анализ на възможностите на различни компютърни системи при

разработването на УП за програмиране на ПР

3. Разработване на методика за разработването на УП за ПР с използване

на компютърни системи

4. Изследване на възможностите, които API предоставя за програмиране

на ПР с използване на компютърни системи

5. Анализ на методите и средствата за трансфер на данни при отдалечено

програмиране на ПР

6. Разработване на API приложение и система за трансфер на данни при

отдалечено програмиране на ПР

7. Прилагане на разработените приложения и оценка на тяхната

функционалност

Изследванията са проведени в дигитална среда чрез прилагане на

компютърни и комуникационни технологии.

4

Научна новост

➢ Разработена е универсална методика, за генериране на управляващи

програми за ПР с използване на CARC системи.

➢ Определени са възможностите за използване на API при програмиране и

експлоатация на ПР.

➢ Разработена е класификация на хакерски атаки срещу роботизирани

производствени системи, проблемите които те предизвикват и са дадени

препоръки за защита от тези атаки.

Практическа приложимост

С използване на API са разработени: сървърен и клиентски код за TCP/IP

свързване; сървър написан на KAREL и код за криптиране на данни при

експлоатация на ПР. Дефинирани са основните стъпки при проектиране на

роботизирани клетки с използване на CARC системи.

Получените резултати се използват при обучението на студенти в катедра

„Автоматизация на дискретното производство“.

Апробация

Апробацията на резултатите е проведени с използване на наличните в

катедра „Автоматизация на дискретното производство“ ПР и софтуер за

неговото програмиране.

Публикации

Основните постижения и резултати от дисертационния труд са

публикувани в 6 на брой научни публикации, една от които е самостоятелна, а

останалите са в съавторство с научният ръководител и колеги от катедра

„Автоматизация на дискретното производство“.

Четири от публикациите са представени в България, на МНТК

„Автоматизация на дискретното производство“, а две на научни форуми в

чужбина.

Две от публикациите са индексирани в Scopus.

Структура и обем на дисертационния труд

Дисертационният труд е в обем от 193 страници, като включва увод, 7 глави

за решаване на формулираните основни задачи, списък на основните приноси,

списък на публикациите по дисертацията и използвана литература. Цитирани

са общо 138 литературни източници, като 58 са на латиница и 7 на кирилица,

а останалите са интернет адреси. Работата включва общо 89 фигури и 13

таблици. Номерата на фигурите и таблиците в автореферата съответстват на

тези в дисертационния труд.

5

II. СЪДЪРЖАНИЕ НА ДИСЕРТАЦИОННИЯ ТРУД

ГЛАВА 1 ОБЗОР И АНАЛИЗ

1.1. История на развитие на промишлените роботи

Използването на роботи в индустрията, придобива първостепенно значение

през миналия век. Разгледани са етапите на еволюцията на ПР.

1.2. Видове ПР и области на тяхното приложение

Въпреки че ПР са с различен дизайн, в зависимост от задачите които ще

изпълняват, най-често срещани са т.нар. автоматизирани ръце „arms“. Тези

роботи могат да бъдат класифицирани в няколко различни категории въз

основа на движение, приложение, архитектура и модел и др.

Разгледани са основните типове ПР, според Международната федерация на

роботите [33].

1.3. Системи за управление на ПР

Разгледани са градивните елементи на системи за управление, използвани

в роботи и роботизирани устройства, работещи както в промишлени така и в

неиндустриални среди, според ISO 8373:2012 (ревизирано в ISO 8373:2021

[38]).

1.4. Програмиране на ПР

Програмирането представлява дефиниране на желаните действия и

движения на ПР, така че той да ги изпълнява без намесата на оператор.

Интерпретирането на УП в ПР се извършва от контролерът. Той е тази част

от ПР, която осъществява връзката между оператора/програмиста и

останалите елементи (външни и вътрешни сензори, периферно оборудване и

др.). Разгледани са основните подходи, използвани при програмиране на ПР.

1.5. Автоматизиране на процеса на генериране на управляващи

програми с използване на API

Приложният програмен интерфейс API (Application Programming Interface)

е инструмент, който осигурява интеграция между различни приложения, като

предоставя на потребителя възможност за използване на език за програмиране

в рамките на друго приложение.

Такива приложения могат да автоматизират определени общи или

повтарящи се задачи, които потребителите изпълняват. Други приложения

могат да комбинират команди по такъв начин, че да осигурят допълнителна

функционалност, съобразена по-специално с нуждите на определени

компании и индустрии.

Системите за компютърно подпомагане CAx (Computer Aided Technologies)

на инженерния труд, предлагат на потребителите различни възможности за

използване на API, които могат да се разделят в две групи.

6

1.6. Изводи

ПР играят ключова роля в автоматизацията на индустриалните процеси. Те

извършват множество операции: заваряване, боравене с материали, монтаж,

боядисване и много други, като сложността на изпълняваните задачи

непрекъснато се увеличава.

Използването на ПР трансформира повечето индустриални системи. Тази

трансформация е повлияна от:

• Внедряване на Интернет на нещата - все повече и повече, роботите ще

използват интелигентни сензори за събиране на информация и за

подобряване на ефективността на процесите.

• Използване на анализ на големи данни - данните, събрани от ПР, трябва

да бъдат организирани в системи, които да посмаляват тяхното

анализиране и получаване на отчети за, състоянието им.

• Използване на виртуални решения - виртуалните решения правят

възможно анализирането на роботизирани системи, без да се налага

прекъсване на производството.

• Използване на отворени архитектури за автоматизация - необходимо е

координация между производителите за създаване на стандарти и

документация, които улесняват въвеждането на ПР в реална

производствена среда.

Възможността за лесно и ефективно програмиране на ПР е критична за

тяхното използване и оптимизацията на производствените процеси.

Използването на различни компютърни системи и софтуерни платформи,

които позволяват програмиране, симулация и управление на ПР значително

ускорява процеса на управление на ПР и намалява вероятността от грешки.

Въпросите свързани с използването на различни компютърни системи при

управление на ПР, са все по-актуални във връзка с концепцията на Industry 4.0.

Въз основа на направения обзор и анализ е дефинирана целта на

настоящата дисертационна работа, изследване на възможностите

предоставяни от различни компютърни системи за използване на API при

експлоатацията на ПР.

ГЛАВА 2 ЕЗИЦИ ЗА ПРОГРАМИРАНЕ ОТ ВИСОКО НИВО

ИЗПОЛЗВАНИ ПРИ АВТОМАТИЗИРАНО ПРОГРАМИРАНЕ

НА ПР

2.1. Програмен език FANUC KAREL

Fanuc KAREL [43] е програмен език, разработен през 80-те години от GMF

(General Motors Fanuc) Robotics - съвместно предприятие между японската

компания Fanuc и американския автомобилен гигант GM (General Motors).

GMF Robotics е една от първите компании, които започват масово

производство на ПР за автомобилната индустрия.

7

2.2. Структура на езика KAREL

KAREL включва структури и модели, общи за езиците от високо ниво,

както и функции, разработени специално за управление на ПР Fanuc. Той

разполага със строго типизирани променливи, константи, персонализирани

типове, процедури, функции и дава достъп до различни вградени функции,

които може да не са достъпни през TP (Teach Pendant).

2.3. Програмен език ABB RAPID

Езикът RAPID [44] е създаден от ABB Robotics в началото на 90-те години

като част от разработката на ново поколение ПР. Той е предназначен да

направи програмирането на ПР по-лесно, интуитивно и мощно, като осигури

по-добър контрол върху движенията, входовете/изходите и обработката на

грешки. RAPID е въведен заедно с контролера S4, а в следващите десетилетия

получава подобрения и разширения, особено с контролерите IRC5, които

добавят функции като мрежова комуникация, IoT интеграция и AI

възможности.

Табл.2.3 Характеристики на FANUC KAREL и ABB RAPID

Характеристика Fanuc KAREL ABB RAPID

Платформа Промишлени роботи Fanuc Промишлени роботи ABB

Тип на езика

Процедурен, силно

типизиран, подобен на

Pascal/Ada

Процедурен, опростен

Формат на програмата
PROGRAM name ... END

name;

MODULE name ...

ENDMODULE

Обявяване на

променливи
VAR speed : INTEGER; VAR num speed;

Тип данни

INTEGER, REAL,

BOOLEAN, STRING[n],

ARRAY, XYZWPR, TRANS

num, bool, string, array,

robtarget, jointtarget, pose

Условни оператори
IF ... THEN ... ELSE ...

ENDIF;

IF ... THEN ... ELSE ...

ENDIF

Цикли
FOR ... ENDFOR;

WHILE ... ENDWHILE;

FOR ... ENDFOR;

WHILE ... ENDWHILE;

Функции и процедури

FUNCTION name : type ...

END name;

ROUTINE name ... END

name;

FUNC type name ...

ENDFUNC;

PROC name ... ENDPROC;

Движение на робота

Чрез TP програми или

позиционни регистри

GET_POS_REG,

SET_POS_REG

MoveJ p1, v100, z10, tool1;

MoveL p2, v50, fine, tool1;

Входове/Изходи (I/O)

Достъп чрез вградени

системни процедури

(IO_STATUS,

SET_PORT_VAL)

SetDO do1, 1;

WaitDI di1, 1;

Обработка на грешки BEGIN ... ERROR ... END
TRAP ... ENDTRAP

ERROR ... ENDERROR

8

Табл.2.4 Сравнение на програмните езици ST, ABB RAPID и Fanuc KAREL

Характеристика ST (Structured Text) ABB RAPID FANUC KAREL

Платформа

PLC (Siemens,

Beckhoff, Allen-

Bradley, Schneider и

др.)

Промишлени роботи

ABB (IRC5

контролери)

Промишлени роботи

FANUC (R-J3, R-30iA,

R-30iB контролери)

Тип на езика

Високо ниво,

стандартизиран (IEC

61131-3), подобен на

Pascal/Modula/C

Специализиран език за

ПР, процедурен

Специализиран език за

ПР, процедурен,

подобен на Ada/Pascal

Синтаксис
Подобен на Pascal и C;

стандартен за PLC

Опростен, интуитивен

за роботни движения

Силно структуриран,

подобен на Ada/Pascal

Леснота на

научаване

Средна – изисква PLC

познания

Висока – лесен за

оператори и

програмисти

По-сложен – изисква по-

задълбочени познания

Гъвкавост

Универсален –

управление на

процеси, логика,

комуникации

Средна – силен за

роботи, ограничен

извън тази област

Ниска – работи само с

FANUC контролери

Използване

PLC програмиране:

логически операции,

управление на

машини, мрежова

комуникация

Програмиране на ABB

ПР: движения, логика,

сензори, интеграция

Програмиране на

FANUC ПР: логика,

сензори, разширени

функции, системен

контрол

Движения на

роботи

Чрез външни

библиотеки,

ограничена поддръжка

Вградено и мощно

управление на

движения: MoveJ,

MoveL, MoveC

Индиректно чрез

позиционни регистри

(GET_POS_REG,

SET_POS_REG) или TP

програми

Програмна

структура

Функции, процедури,

цикли

Модули, процедури

(PROC/FUNC), обекти

Програми, подпрограми,

ROUTINE/FUNCTION,

глобални и локални

променливи

Приложения

Автоматизация на

машини, процеси,

SCADA интеграция

Роботизирани

приложения:

заваряване, монтаж,

палетизиране, CNC,

обработка vision,

мрежи

Разширено

програмиране на ПР:

логика, сензори, vision,

мрежи

Обработка на

грешки

TRY...CATCH,

стандартен механизъм

за изключения

ERROR и TRAP

блокове за обработка

BEGIN ... ERROR ...

END и ON ERROR

конструкции

Поддръжка на

мрежи

Modbus, EtherNet/IP,

PROFINET и други

стандартни PLC

протоколи

TCP, UDP, FTP, Socket

комуникация

TCP, FTP (няма UDP);

ограничена мрежова

интеграция

2.4. Структура на езика RAPID

Езикът RAPID за програмиране има подобен вид на повечето ST езици за

програмиране и много наподобява езика C. Той е структуриран и лесен за

научаване, като предоставя богат набор от инструкции и функции за

9

управление на движенията на ПР, обработка на сигнали, комуникация с

външни устройства и много други.

2.5. Сравнителен анализ на възможностите на езици за програмиране от

високо ниво използвани при автоматизирано програмиране на ПР

Fanuc KAREL и ABB RAPID са два различни програмни езика, използвани

за управление на ПР. Въпреки че и двата езика имат подобни цели, те се

различават по структура, синтаксис и предназначение. Сравнение на

характеристиките на двата езика е даден в Табл.2.3.

Въпреки спецификата на KAREL и RAPID, всеки запознат с език за

програмиране в стил C, би трябвало сравнително лесно да се справи с

програмиране на ПР с използване на тези езици.

В Табл.2.4 е дадено сравнение на програмните езици ST, ABB RAPID и

Fanuc KAREL, използвани в индустриалната автоматизация.

2.6. FANUC KAREL и ABB RAPID в контекста на Industry 4.0

Програмните езици Fanuc KAREL и ABB RAPID, предоставят

допълнителни възможности при управлението на ПР, съвместими със

съвременните концепции на Industry 4.0, като интернет на нещата IoT (Internet

of Things), облачни технологии CT (Cloud Technologies), изкуствен интелект

AI (Artificial Intelligence) и интелигентна автоматизация.

2.7. Изводи

Езиците за програмиране ST, ABB RAPID и Fanuc KAREL, използвани в

индустриалната автоматизация, притежават някои общи черти, но всеки от тях

е разработен за специфична платформа и има своите уникални особености.

Анализирани са допълнителните възможности, които езиците за

програмиране KAREL и RAPID, предоставят на потребителите при

програмиране на ПР.

Направен е сравнителен анализ на възможностите на езици за

програмиране ST, ABB RAPID и Fanuc KAREL при автоматизирано

програмиране на ПР.

Анализирано е използването на програмните езици Fanuc KAREL и ABB

RAPID, в контекста на използването на: Интернет на нещата; облачни

технологии; изкуствен интелект и интелигентна автоматизация при

експлоатация на ПР.

ГЛАВА 3 ТРАНСФЕР НА ДАННИ ПРИ ЕКСПЛОАТАЦИЯ НА ПР

3.1. Протоколи за трансфер на данни при експлоатация на ПР

В настоящия момент, се използват множество технически решения, чрез

които се осъществява отдалечено програмиране и управление на

производствено оборудване, изпълняващо дадена производствена програма.

Сравнение на мрежовите функции и протоколи, поддържани в

разгледаните в Глава 2, езици за програмиране от високо ниво използвани при

експлоатацията на ПР е дадено в Табл.3.1.

10

Табл.3.1 Мрежовите функции и протоколи в ST, FANUC KAREL и ABB RAPID

Функция /

Протокол
ST (PLC)

FANUC

KAREL
ABB RAPID

Забележки /

ограничения

Поддържани

мрежови

протоколи

TCP/IP, UDP, Modbus

TCP, OPC-UA, MQTT,

ProfiNet, EtherNet/IP

TCP/IP, FTP,

HTTP, Socket

Messaging

TCP/IP, UDP*,

FTP, HTTP,

Web Services

(REST/SOAP),

Socket Messaging

*RAPID: UDP не е

вграден; изисква

външна

конфигурация;

KAREL няма UDP

Създаване на

сокет (TCP/IP

клиент/сървър)

SysSockCreate(),

SysSockBind(),

SysSockConnect()

Комуникация

чрез

конфигурирани

тагове,

MSG_DISCO и

OPEN FILE

SocketCreate,

SocketBind,

SocketConnect

UDP сокети при

RAPID/KAREL

изискват външна

конфигурация или

скриптове

Изпращане на

данни
SysSockSend()

Socket Send

Messaging
SocketSend

Получаване на

данни
SysSockRecv()

Socket Receive

Messaging

SocketReceive

(има в

ръководството, но

не винаги се

използва)

Затваряне на

сокет
SysSockClose()

затваряне чрез

стандартни

файлови

операции

SocketClose

FTP

комуникация

SysFTPClientPut(),

SysFTPClientGet()
CALL_PROG

Вграден FTP

сървър, достъп

чрез GetFTP

HTTP/HTTPS

поддръжка

SysWebClientRequest()

(при някои PLC)
HTTP_REQ

HTTP и Web

Services

(REST/SOAP)

UDP

комуникация

SysSockSendTo(),

SysSockRecvFrom()
Не поддържа

UDPSend,

UDPReceive

KAREL няма

UDP; RAPID –

само чрез

допълнителна

конфигурация и

скриптове

WebSockets
Ограничена

поддръжка

Ограничена

поддръжка

Възможно чрез

Web Services

Няма универсална

вградена

WebSocket

поддръжка

Индустриални

протоколи

OPC UA, Modbus

TCP, ProfiNet,

EtherNet/IP, MQTT

OPC UA (с

лиценз), Modbus

TCP, EtherNet/IP,

ProfiNet

OPC UA (вграден),

Modbus TCP,

ProfiNet,

EtherNet/IP

KAREL: OPC UA

изисква лиценз;

RAPID – вграден,

пълна поддръжка

Поддръжка на

JSON/XML

Възможна с

библиотеки (зависи от

производителя)

Ръчна обработка

на низове

Вграден парсинг

за JSON/XML

KAREL: ръчна

обработка; ST PLC

– зависи от

наличните

библиотеки

Вграден Web

Server

Поддържан в някои

PLC

Ограничена

поддръжка

Вграден Web

Server за

мониторинг и

управление

KAREL:

ограничен; RAPID

– пълен,

включително ABB

Ability интерфейс

Cloud

интеграция

MQTT, OPC-UA към

облачни услуги

Изисква външни

скриптове –

FANUC FIELD

SYSTEM

Поддържа ABB

Ability Cloud

KAREL: трябва TP

скрипт или FIELD

System; ST PLC –

зависи от

библиотеките

11

Табл.3.2 Сървърен код за TCP/IP свързване

FANUC KAREL ABB RAPID

PROGRAM tcp_server

%STACKSIZE = 4000

%NOLOCKGROUP

%NOPAUSE=ERROR+COMMAND+TPENABLE

%ENVIRONMENT uif

%ENVIRONMENT memo

%ENVIRONMENT flbt

%INCLUDE klevkeys

%ENVIRONMENT bynam

%INCLUDE klevkmsk

%ENVIRONMENT fdev

%INCLUDE klevccdf

%ENVIRONMENT kclop

%ENVIRONMENT sysdef

VAR

file_var : FILE

tmp_int : INTEGER

tmp_str1 : STRING[128]

tmp_int1 : INTEGER

tmp_str : STRING[128]

status : INTEGER

entry : INTEGER

BEGIN

SET_FILE_ATR(file_var, ATR_IA)

SET_VAR(entry, 192.168.1.3 '*SYSTEM*',

'$HOSTS_CFG [3]. $SERVER_PORT', 6008, status)

WRITE TPPROMPT('Connecting.', status, CR)

MSG_CONNECT('S3', status)

WRITE TPPROMPT('Connect Status = ', status, CR)

IF status = 0 THEN

WRITE TPPROMPT('Opening', CR)

FOR tmp_int1 = 1 TO 20 DO

OPEN FILE file_var ('rw', 'S3:')

status = IO_STATUS(file_var)

WRITE TPPROMPT(status, CR)

IF status = 0 THEN

FOR tmp_int = 1 TO 1000 DO

WRITE TPPROMPT ('Reading', CR)

BYTES_AHEAD (file_var, entry, status)

WRITE TPPROMPT (entry, status, CR)

READ file_var (tmp_str::10)

status = IO_STATUS(file_var)

WRITE TPPROMPT(status, CR)

ENDFOR

CLOSE FILE file_var

ENDIF

ENDFOR

WRITE TPPROMPT('Disconnecting..', CR)

MSG_DISCO('S3:', status)

WRITE TPPROMPT('Done.', CR)

ENDI

END tcp_server

MODULE Module1

 VAR socketdev serverSocket;

 VAR socketdev clientSocket;

 VAR string data;

 PROC main()

 !Add your code here

 SocketCreate serversocket;

 SocketBind serverSocket, “127.0.0.1” ,

5000;

 SocketListen serverSocket;

 SocketAccept serverSocket,

clientSocket, \Time:= WAIT_MAX;

 SocketReceive clientSocket

\Str:=data;

 SocketSend clientSocket \Str:=

“received”;

 SocketClose clientSocket;

 SocketClose serverSocket;

 ERROR

 IF ERRNO=ERR_SOCK_TIMEOUT

THEN

 RETRY;

 IF ERRNO=ERR_SOCK_TIMEOUT

THEN

 RETRY;

 ELSEIF

ERRNO=ERR_SOCK_CLOSED THEN

 SocketClose clientSocket;

 SocketClose serverSocket;

 SocketCreate serverSocket;

 SocketBind serverSocket, “127.0.0.1” ,

5000 ;

 SocketListen serverSocket;

 SocketAccpet serverSocket,clientSocket,

\Time:=WAIT_MAX;

 RETRY;

 ELSE

 stop;

 ENDIF

 ENDPROC

ENDMODULE

В Табл.3.2 е дадено сравнения на сървърен код за TCP/IP свързване

разработен с Fanuc KAREL и ABB RAPID.

12

Табл.3.3 Клиентски код за TCP/IP свързване

FANUC KAREL ABB RAPID

PROGRAM tcp_client

%STACKSIZE = 4000

VAR

 file_var : FILE

 status : INTEGER

 recv_str : STRING[128]

 send_str : STRING[16] := "Hello from client"

 bytes_ahead : INTEGER

 i : INTEGER

BEGIN

 MSG_CONNECT('S3', status)

 WRITE TPPROMPT('Connect Status = ', status,

CR)

 IF status = 0 THEN

 OPEN FILE file_var ('rw', 'S3:')

 status = IO_STATUS(file_var)

 IF status = 0 THEN

 FOR i = 1 TO 10 DO

 WRITE TPPROMPT('Sending data...', CR)

 WRITE file_var(send_str)

 status = IO_STATUS(file_var)

 IF status <> 0 THEN

 WRITE TPPROMPT('Error sending

data', CR)

 EXIT FOR

 ENDIF

 BYTES_AHEAD(file_var, bytes_ahead,

status)

 IF bytes_ahead > 0 THEN

 READ file_var(recv_str::bytes_ahead)

 WRITE TPPROMPT('Received: ',

recv_str, CR)

 ELSE

 WRITE TPPROMPT('No data available

to read', CR)

 ENDIF

 ENDFOR

 CLOSE FILE file_var

 ELSE

 WRITE TPPROMPT('Error opening socket

file', CR)

 ENDIF

 MSG_DISCO('S3', status)

 WRITE TPPROMPT('Disconnected', CR)

 ELSE

 WRITE TPPROMPT('Connection failed', CR)

 ENDIF

END tcp_client

MODULE Module1

VAR socketdev clientSocket;

 VAR string data;

VAR string recvData;

VAR num errStatus;

PROC main()

! Създаване на клиентски сокет

SocketCreate clientSocket;

! Опит за свързване към сървъра на

127.0.0.1:5000

 SocketConnect clientSocket, "127.0.0.1",

5000 \Timeout:=5000; ! Проверка за

грешки при свързване

IF ERRNO <> 0 THEN TPWrite

"Connection failed with error: "; TPWrite

ERRNO; RETURN; ENDIF „

! Изпращане на съобщение към сървъра

data := "Hello Server"; SocketSend

clientSocket \Str:=data; ! Получаване на

отговор от сървъра

SocketReceive clientSocket

\Str:=recvData;

 ! Показване на получените данни

TPWrite "Received from server: " &

recvData;

! Затваряне на клиентския сокет

SocketClose clientSocket; ENDPROC

ENDMODULE

При експлоатацията на ПР могат да се разграничат две взаимно свързвани

групи задачи: генериране на УП и трансфера на данни между контролера на

13

робота и платформата на която е инсталиран софтуера за отдалечено

програмиране и управление.

3.2. Свързване на ПР в мрежа

Свързването на ПР в мрежа позволява интеграцията му със съществуващи

автоматизирани производствени системи, а също така предлага възможности

за дистанционно управление, мониторинг и анализ на данни.

В Табл.3.3 е дадено сравнения на клиентски код за TCP/IP свързване

разработен с Fanuc KAREL и ABB RAPID.

3.3. Мрежова сигурност при експлоатация на ПР

С увеличаване на сложността на индустриалните мрежи се увеличават и

заплахите за тяхната сигурност, а проектиращите подобни технически

решения, трябва да вземат в предвид всякакви видове заплахи, за да осигурят,

сигурността на предаваната информация.

Отдалеченото програмиране на ПР се базира, на сигурна мрежова връзка

чрез криптиращи информацията, мрежови устройства, обезпечаващи

сигурността на предаваната информация.

Фиг.3.2 Класификация на атаките срещу роботизирани производствени системи

14

3.4. Атаки при експлоатация на ПР

На база извършен анализ на видовете атаки срещу роботизираните

производствения системи е разработена тяхната класификация по три

признака, показана на Фиг.3.2.

Табл.3.4 Видове атаки срещу роботизирани системи

Тип атака Подходи за защита

Атаки срещу управлението на ПР

Промяна на параметрите

на контролера на ПР

Контрол на достъпа, засичане на аномалии, валидация на

параметър, двуфакторна автентикация (2FA), преинсталация от

backup

Промяна на

потребителския

интерфейс на ПР

Контрол на достъпа, мониторинг на данните, шифроване на

комуникацията, редовни бекъпи

Промяна на

калибрирането на ПР

Контрол на достъпа, проверка на калибрацията, засичане на

аномалии, цифрови подписи, редовни бекъпи, прекалибриране

Промяна на

изпълняваната от ПР

програма

Контрол и ограничаване на достъпа, резервни копия на

програмите, презареждане на програмата

Атаки чрез уязвимости на

софтуера на ПР

Контрол на достъпа, провеждане на пен-тестове за откриване на

уязвимости, редовни backup-и, редовни актуализации на софтуера.

Атаки срещу управлението на роботизираните производствени системи

Физически атаки чрез

мрежовата връзка

Контрол и ограничаване на достъпа до мрежовите портове,

защитени зони, физическа защита на мрежата, VPN защити

Атаки човек по средата -

Man-in-the-Middle

(MITM)

Шифроване на мрежовия трафик, VPN допълнителна стена,

ежедневен бекъп на роботизираната система, сегментиране на

мрежата

Атаки разпределен отказ

от услуга - Distributed

Denial-of-Service (DDoS)

Наблюдение на мрежовия трафик, защитни стени, DDoS защита,

мрежова сегментация

Атаки на индустриални

системи за управление

Мониторинг и анализ на системата, сегментиране на мрежата,

защита на ICS системи

Атаки срещу фирмената система за управление

Атаки срещу

доставчиците и

партньорите - Supply

Chain Attacks

Контрол на мрежата за приемане на данни, отдалечен мониторинг

на мрежата, проверка на софтуера, цифрови подписи

Атаките посредством

постоянни заплахи

Advanced Persistent

Threats

Мониторинг на мрежовия трафик, за да откривате подозрителни

активности, обучение на екипа за идентифициране на

продължителни атаки, редовни одити

Рансъмуер атаки Мониторинг за откриване на зловреден код, редовни бекъпи на

данни, антивирусна защита, мрежова сегментация

Социално инженерство Политики за сигурност, тестване на сигурността, ограничаване на

споделянето на чувствителна информация, верификация на

потребителите, който изискват достъп

Тези признаци са:

➢ Атаки срещу управлението на ПР

Първата група са атаки насочени към контролера на ПР. Те имат за цел да

променят поведението на ПР при, неговата експлоатация.

15

➢ Атаки срещу управлението на роботизираните производствени системи

Втората група са атаки насочени към мрежата, в която е свързан

контролерът на ПР. Те имат за цел да проникнат в системата за управление на

роботизираната система и да нарушат нейната работа.

➢ Атаки срещу фирмената система за управление

Третата група са атаки целящи получаване на достъп до роботизираните

системи без необходимите права, с цел разпространение на зловреден софтуер,

който да наруши работата на системите.

Ефектите от атаката са: получаване на неоторизиран допуск; спиране на

производството; загуба на данни; финансови загуби; репутационен риск.

В Табл.3.4 са дадени подходите, които могат се използват за защита от

разгледаните атаки.

3.5. Криптиране на данни при експлоатация на ПР

Предимството от използването на системите с отворен код е, че са

свободни за доизграждане и технологично развитие, според потребностите на

потребителите.

При използване на криптиращи устройства се залага на сигурността на

предаваната информация, като по този начин се предотвратява възможността

за загуба или неоторизиран достъп до чувствителна информация. В

настоящият момент сигурността на индустриалните мрежи, не може да бъде

пренебрегвана, в резултат на което на пазара се предлагат все повече решения,

за криптиране на данни, на приемлива цена.

3.6. Изводи

Свързването на ПР в мрежа е ключово за съвременните индустриални

приложения. Възможността за комуникация през мрежата не само подобрява

производителността, но и позволява дистанционно управление и мониторинг

на роботизираната система.

Разгледани са основните комуникационните протоколи, чрез които може

да се осъществи отдалечена експлоатация на ПР и са анализирани мрежовите

функции заложени в езиците за програмиране на ПР ST, Fanuc KAREL и ABB

RAPID

Разработени и сравнени са сървърен и клиентски код за TCP/IP свързване

с използване на езиците за програмиране на ПР Fanuc KAREL и ABB RAPID.

Разработена е класификация по три признака на, видовете атаки срещу

роботизирани производствени системи и са дадени препоръки за защита от

тези атаки.

Криптирането на данни при програмирането на ПР играе важна роля за

осигуряване на безопасност и конфиденциалност на комуникацията между

роботизираните системи и външните устройства. Това е особено важно, когато

роботизираната система е интегрирана в индустриална мрежа, където обменът

на чувствителни данни може да бъде изложен на атаки и неоторизиран достъп.

Криптирането помага да се защитят данните и комуникационните канали,

16

което е критично за поддържането на конфиденциалност и цялост на

системата.

Разработен е пример за защита на сокет комуникацията при експлоатация

на ПР Fanuc, с използване на езика KAREL.

ГЛАВА 4 АВТОМАТИЗИРАНЕ ПРОГРАМИРАНЕТО НА ПР

4.1. Компютърни системи за програмиране на ПР

Това са CARC (Computer Aided Robot Control) [46] системите, които могат

да се срещнат и като OLPE (Off-line Programming Environments). В тях се

прилагат съвременните достиженията в областта изчислителната техника и

инженерната компютърна графика.

CARC системи използват 3D модели на ПР и друго производствено

оборудване, чрез които могат да се изграждат роботизирани производствени

системи, да се симулира и анализира тяхната работа и да се генерират

управляващи програми, за включените в тях ПР.

4.2. Анализ на възможностите на основните съвременни CARC системи

Отчитайки, многообразието на предлагани в момента от различни

производители CARC системи, използвайки общо достъпни източници е

направено изследване на техните функционални възможности на база на

следните десет критерия:

• наличие на специализирани модули за програмиране при изпълнение на

различни задачи от ПР;

• наличие на библиотеки с 3D модели на различни ПР;

• наличие на библиотеки с 3D модели на КИЗ;

• наличие на библиотеки с 3D модели на производствено оборудване;

• възможност за използване на виртуален пулт за управление на ПР;

• възможност за използване на езици за програмиране на ПР от високо

ниво и API;

• възможност за симулиране и оптимизиране на работата на ПР;

• възможност за проектиране и анализ на работата на роботизирани

клетки;

• възможност за обмен на данни с други CAx системи;

• поддържане на различни контролери на ПР.

Резултатите от направеното изследване са дадени в Приложение 1. От

данните там се вижда, че основните различия в предлаганите на пазара CARC

системи, са свързани с възможностите им да обменят данни с други CAx

системи и поддържане на контролери на ПР, предлагани от различни фирми.

4.3. Методика за генерирана е на управляващи програми за промишлени

роботи с използване на CARC системи

Независимо от разнообразието на предлаганите в момента CARC системи,

основните етапи при работа с тези системи, до голяма степен се припокриват.

Тук е предложена методика описваща основните стъпки при работа с CARC

17

системите, необходими за генериране на УП за ПР и са анализирани

възможностите за използване на API в този процес.

Основните етапи, необходими за генериране на УП за ПР, независимо от

използваната CARC система са дадени в разработената методика показана на

Фиг.4.1.

Фиг.4.1 Методика за генерирана е на УП за ПР с използване на CARC системи

Те са както следва:

Етап 1 Избор на промишлен робот

Етап 2 Избор на крайно изпълнителни звено

Етап 3 Избор на допълнително оборудване

Етап 4 Разработване на управляващата програма

18

Етап 5 Симулиране на разработената програма

Етап 6 Постпроцесиране на разработената програма

Етап 7 Трансфер на програмата до контролера на робота

Етап 8 Изпълнение на разработената програма

4.4. Изводи

Направен е сравнителен анализ на функционалните възможности на

различни съвременни CARC системи предлагани на пазара, на база на десет

критерия.

Съвременните CARC системи, предоставят на потребителите широки

възможности за генериране УП за ПР, те позволяват в процеса на разработване

на УП, да се използват различни 3D модели, виртуални пултове, API и езици

за програмиране от високо ниво.

Разработена е методика, включваща осем етапа, за генерирана е на УП за

ПР с използване на CARC системи.

Разгледани са основните стъпки при използване на разработената методика

и са анализирани възможностите за използване на API в този процес.

Разработената методика, за генерирана е на УП за ПР с използване на

CARC системи е универсална и не зависи от използваната CARC система и

ПР, за които се генерира УП.

ГЛАВА 5 ИЗПОЛЗВАНЕ НА API ПРИ ЕКСПЛОАТАЦИЯ НА ПР

5.1. API в компютърните системи за програмиране на ПР

Отчитайки отделните стъпки в предложената методика и направения

анализ на възможностите, който съвременните CARC системи, предоставят на

потребителите за генериране УП за ПР използването на API в този процес

може да бъде използвано за:

• разработването на софтуерни приложения, за създаване на 3D модели на

различни компоненти за проектиране на роботизирани клетки;

• разработване на приложения за отдалечено програмиране на ПР;

• разработване на приложения за отдалечен обмен на данни между ПР и

хост компютър.

API предоставя интерфейс, който позволява на различни софтуерни

приложения да комуникират и взаимодействат едно с друго. В контекста на

експлоатацията на ПР, API играе ключова роля в следните аспекти:

5.2. Езици за програмиране използвани в API при експлоатация на ПР

В Табл.5.1 е дадено сравнение на някои основни характеристики при

използване на езиците Fanuc KAREL, ABB RAPID, C++, C#, Python и Perl, при

експлоатация на ПР.

19

Табл.5.1 Сравнение на езиците Fanuc KAREL, ABB RAPID, C++, C#, Python и Perl,

при експлоатация на ПР

Функция /

Описание

Fanuc

KAREL

ABB

RAPID
C/C++ C# Python Perl

Създаване

на сокет
MSG_CONN /

MSG_CONNECT

SocketCreate

socketdev
socket() TcpListener< socket.socket()

IO::Socket::IN

ET->new(...)

Свързване

към сървър
MSG_DISCO

SocketConnect

socketdev, ip,

port

connect() TcpClient
socket.connect

()
connect()

Изпращане

на данни
Команди на

KAREL

SocketSend

socketdev, data
send()

NetworkStrea

m.Write()
send()

print SOCKET

"data"

Получаване

на данни
WRITE

SocketReceive

socketdev,

buffer

recv()
NetworkStrea

m.Read()
recv()

$data =

<SOCKET>

Затваряне на

сокет
MSG_DISCO(tag

_name, status)

SocketClose

socketdev
close() Close() close()

close(SOCKE

T)

Поддържани

протоколи
TCP/IP TCP/IP, UDP TCP/IP, UDP TCP/IP, UDP TCP/IP, UDP TCP/IP, UDP

Мулти

клиентска

поддръжка

Ограничена

сървър
Да

Да, чрез

многопоточно

ст

(pthread/std::t

hread)

Да, чрез

Task/Threadin

g

Да, чрез

threading или

asyncio

Да, чрез fork()

Обработка

на грешки

BEGIN ...

ERROR

Обработва

грешки чрез

ERROR блокове

TRAP

Обработва

грешки чрез

TRAP блокове

try-catch

Обработва

грешки чрез

try-catch

блокове.

try-catch

Обработва

грешки чрез

try-catch

блокове.

try-except

Обработва

грешки чрез

try-except

блокове.

eval и $@

Обработва

грешки чрез

eval и $@.

Приложения

в

индустриалн

а

автоматизац

ия

Робот-

контролери,

комуникация с

PLC

SCADA, IoT,

Web

интеграции

Вградени

системи,

комуникация

с роботи

Индустриалн

и

приложения,

SCADA

IoT, AI,

обработка на

данни, роботи

Уеб услуги,

автоматизаци

я

Функция /

Описание
FANUC KAREL ABB RAPID C/C++ C# Python Perl

Създаване

на сокет
MSG_CONN(tag

_name, status)

SocketCreate

socketdev
socket() TcpListener socket.socket()

IO::Socket::IN

ET->new(...)

В Табл.5.2 е дадено сравнения на клиентски код за TCP/IP свързване

разработен с езици за програмиране от високо ниво C++, C#, Python и Perl.

Клиентски код за TCP/IP при експлоатация на ПР, разработен с езиците Fanuc

KAREL, ABB RAPID е даден в Табл.3.3.

В Табл.5.3 е дадено сравнение на използването на различни езици за

програмиране от високо ниво, използвани за криптиране на данни при

експлоатация на ПР.

20

Табл.5.2 Сравнение клиентски код за TCP/IP свързване

Език от високо

ниво
TCP клиент – сорс код

Python

import socket

client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

client.connect(("192.168.1.100", 5000))

client.send(b"Hello, Server!")

response = client.recv(1024)

print("Received:", response.decode())

client.close()

PERL

use IO::Socket::INET;

my $client = IO::Socket::INET->new(

 PeerHost => "192.168.1.100",

 PeerPort => "5000",

 Proto => "tcp"

) or die "Could not connect\n";

print $client "Hello, Server!\n";

my $response = <$client>;

print "Received: $response\n";

close($client)

C++

#include <iostream>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <unistd.h>

int main() {

 int sock = socket(AF_INET, SOCK_STREAM, 0);

 struct sockaddr_in server;

 server.sin_family = AF_INET;

 server.sin_port = htons(5000);

 inet_pton(AF_INET, "192.168.1.100", &server.sin_addr);

 connect(sock, (struct sockaddr*)&server, sizeof(server));

 send(sock, "Hello, Server!", 14, 0);

 char buffer[1024] = {0};

 recv(sock, buffer, 1024, 0);

 close(sock);

 return 0;

}

C#

using System;

using System.Net.Sockets;

using System.Text;

class Program {

 static void Main() {

 TcpClient client = new TcpClient("192.168.1.100", 5000);

 NetworkStream stream = client.GetStream();

 byte[] data = Encoding.ASCII.GetBytes("Hello, Server!");

 stream.Write(data, 0, data.Length);

 byte[] buffer = new byte[1024];

 stream.Read(buffer, 0, buffer.Length);

 Console.WriteLine("Received: " + Encoding.ASCII.GetString(buffer));

 client.Close();

 }

}

21

5.3. Приложения на API в индустриалната автоматизация

Използването на API в индустриалната автоматизация, може да се

разглежда в следните аспекти:

• автоматизация на производството - позволява синхронизация на

работата на ПР и друго производствено оборудване;

• колаборативни роботи (Cobots) - използва се за управление на роботи,

които работят съвместно с хора;

• интелигентни фабрики - осигурява интеграция на ПР със системи за IoT

и машинно обучение.

5.4. Изводи

API в компютърните системи за програмиране на ПР, предоставя мощен

инструмент за интеграция, автоматизация и управление. Той улеснява

разработката на софтуерни решения и гарантира, че ПР могат да бъдат

адаптирани към динамично променящите се изисквания на съвременната

индустрия.

Разгледани са възможностите и аспектите, които API предоставя при

генериране УП за ПР и тяхната експлоатация.

Разгледани са най-често използваните езици за програмиране от високо

ниво, използвани в API при експлоатация на ПР и са анализирани областите

на тяхното приложение.

Разработен и анализиран е код, за криптиране на данни при експлоатация

на ПР, с използване на различни езици за програмиране от високо ниво,

използвани в API при експлоатация на ПР.

Направено е сравнение на някои от основни характеристики при

използване на езиците Fanuc KAREL, ABB RAPID, C++, C#, Python и Perl, при

експлоатация на ПР.

Създадена е клиент сървър система като са използвани Common LISP и

Emacs LISP.

ГЛАВА 6 ПРИЛАГАНЕ НА РАЗРАБОТЕНАТА МЕТОДИКА ЗА

ПРОГРАМИРАНЕ НА ПР

6.1. Програмиране на ПР в средата на ROBOGUIDE

Разработената методика е използвана за програмиране на ПР в средата на

ROBOGUIDE.

С използване на Fanuc ROBOGUIDE, създадения сървър TCP_SERVER.kl

написан на KAREL е компилиран Фиг.6.9.

22

Фиг.6.9 Компилиране на TCP_SERVER.kl във Fanuc ROBOGUIDE

6.2. Програмиране на ПР в средата на ABB RobotStudio

Разработената методика е използвана за програмиране на ПР в средата на

ABB Robot Studio.

Манипулирания детайл е кашон /box/ с желаните размери и тегло Фиг.6.23.

Фиг.6.23 Дефиниране на манипулирания обект

Следващата стъпка е дефиниране на движенията на ПР между

дефинираните точки Фиг.6.27.

Фиг.6.27 Дефиниране на движенията на ПР

23

Разработената програма може да прехвърли данни тип “String” – низове от

външен клиент написан на език на високо ниво, до сървъра на ABB RAPID.

Софтуерната опция, инсталирана на ABB RobotStudio е “616-1 PC Interface” –

необходима за Socket комуникация.

Предаване на данни е показано на Фиг.6.30:

• data “string”/ред 1 - VALUE в RAPID WATCH/ от външен клиент /Delphi/

до сървъра, написан на ABB RAPID

• вид на данните – низ /String/ ,числа от 0 до 9 и букви А...Я и A…Z

Фиг.6.30. Предаване на данни

6.3. Изводи

Разработената в Глава 4 методика, е използвана за програмиране на ПР в

средата на Fanuc ROBOGUIDE и ABB RobotStudio. Анализът на получените

при това резултати, доказва нейната функционалност.

С използване на Fanuc ROBOGUIDE е разработен сървър, написан на

KAREL, които може да се използва, с клиентска програма, написана на почти

всеки език за програмиране от високо ниво като: C, C++, C#, Java, Python,

PERL, Delphi и др., спазвайки Socket Programming синтаксиса.

Чрез използване на езика от високо ниво Python, е създаден и тестван

клиент, който да работи със създадения в средата на Fanuc ROBOGUIDE

сървър.

С използване на ABB RobotStudio е генериран изходен код на RAPID, за

програмиране на ПР изпълняващ “Pick and Place” операции за обслужване на

конвейер.

Създаден е сървър написан на RAPID ABB, използван за трансфер на

данни, при трансфер на данни и експлоатация на ПР.

24

ГЛАВА 7 ПРОГРАМИРАНЕ НА ПР ПРИ НАЛИЧИЕ НА

ДОПЪЛНИТЕЛНА ОС

7.1. Програмиране на ПР при наличие на допълнителна ос

Използването на допълнителна ос на движение, осигуряваща мобилност на

ПР, с цел разширяване на неговата работна зона, е често използвана практика

при проектиране на роботизирани клетки. Управлението на тази допълнителна

ос, трябва да се свърже към контролера на ПР, за да може тя да се управлява

от програмата, по която работи ПР.

Наличието на допълнителна ос на движение, свързана към контролера на

ПР, изисква допълнителни стъпки при разработване на УП за ПР с използване

на CARC системи.

7.2. Програмиране на ПР при наличие на допълнителна ос в средата на

ROBOGUIDE

ROBOGUIDE предоставя на потребителите различни инструменти за

разработване на УП при наличие на допълнителна ос. За конфигуриране на

допълнителната ос в средата на ROBOGUIDE, ще бъде използван виртуалния

подвижен пулт на Fanuc LR Mate 200iD/7L, притежаващ пълната

функционалност на реалния.

С използване на виртуалния подвижен пулт стартираме диалог за добавяне

на допълнителна ос Фиг.7.3, като избираме

Maintenance - > Extended Axis Control - > F4(Manual) - >

Фиг.7.3 Избиране на меню поддръжка

7.3. Програмиране на ПР при наличие на допълнителна ос в средата на

RobotStudio

За конфигуриране на допълнителната ос в средата на RobotStudio, ще

25

бъдат използвани библиотеките, с индустриално оборудване, доставяни със

системата.

3D модели на роботизирани клетки за изпълнение на “Pick and Place”

операции с използване на допълнителна ос са показани както следва:

Фиг.7.16 Допълнителна ос в средата на FANUC ROBOGUIDE

Фиг.7.17 Допълнителна ос в средата на ABB RobotStudio

• ПР Fanuc LR Mate 200iD/7L и допълнителна ос в средата на Fanuc

ROBOGUIDE - Фиг.7.16;

• ПР ABB IRB 2600 и долна подвижна релса IRBT-2005 в средата на ABB

RobotStudio - Фиг.7.17.

26

7.4. Програмиране на ПР при наличие на допълнителна ос с използване

на KAREL

В зависимост от конфигурацията на ПР, допълнителната ос може да бъде

активирана в контролера, като се зададат съответните параметри. KAREL, като

език за програмиране на ПР Fanuc, можете да контролирате всички оси чрез

команди за движение и позициониране.

Fanuc KAREL по подразбиране не предоставя директни команди за

движение, като LMOVE или JMOVE. Директното задаване на движение от

KAREL е възможно само при активиран лиценз Motion Option (софтуерна

опция J601).

По долу е дадена примерна програма на KAREL фиг.7.18, за управление

на седма ос:

Фиг.7.18 KAREL програма за управление на седма ос в програмна среда Fanuc Roboguide

7.5. Проектиране на роботизирана клетка за изпълнение на “Pick and

Place” операции в средата на ROBOGUIDE

С усложняването на изпълняваните от ПР операции и развитието на

компютърните технологии, CARC системите, се превръщат в стандартен за

инженерната практика инструмент. Тези системи непрекъснато се развиват,

като освен разработване на програми за ПР, предоставят на техните

потребители възможност за включване на ПР в структурата на различни

роботизирани клетки.

За демонстриране на тези възможности ще бъде разгледано проектирането

на роботизирана клетка за “Pick and Place” операции, състоящи се в

палетизиране на кашони с размери 300х250х200 [mm] и тегло 5 [kg], в четири

реда върху европалети EUR 2 1200x1000 [mm].

27

На Фиг.7.19 са показани шест възможни конфигурации на проектираната

клетка, с отчитане на размерите на работната зона на използвания ПР.

Клетката включва следните основни компоненти:

• конвейер - доставя кашоните до роботизираната клетка за палетизиране;

• промишлен робот - извършва подреждането на кашоните върху

палатите;

• палети – определят зоната за подреждане на кашоните;

• допълнителна ос – осигурява разширяване на работната зона на ПР.

Фиг.7.19 Конфигурации на проектираната клетка

Анализът на разработените конфигурации, включва оценка на

възможностите на избрания ПР да извършва необходимите операции при

конкретното разположение на компонентите на клетката. При необходимост

ПР може да бъде заменен с друг или да се добави допълнителна ос на

мобилност, с цел разширяване на работната му зона.

Резултатът от изпълнение на тази стъпка за конфигурациите от Фиг.7.19 с

използване на ROBOGUIDE, за проектираната роботизирана клетка е показан

на Фиг.7.22.

Резултатът от анализа показва, че максималните размери на работните зони

на избраните в стъпка (3) ПР, позволяват извършването на необходимите

операции.

28

Фиг.7.22 Анализ на разработените конфигурации в средата на ROBOGUIDE

Табл.7.2 Характеристики на разработените конфигурации

Конфигурация

Време за подреждане на кашоните

[min]
Обща

площ [m2]
Цена

Палет1 Палет 2 Общо

1 7.58 10.91 18.49 7 1

2 7.58 7.58 15.16 8 1

3 7.58 7.48 15.06 6 0,92

4 10.78 10.78 21.56 9 0,93

5 4.86 6.20 11.06 11 0,77

6 4.86 4.86 9.72 11 0,77

29

Данните в Табл.8.1 показват, че съгласно приетите критерии:

• с най-малко време за подреждане на кашоните върху двата палета (най-

висока производителност е конфигурация 6 - 9.72 [min];

• с най-малко заемана площ е конфигурация 1 7 [m2];

• с най-ниска цена са конфигурации 5 и 6.

Въз основа на тези данни оптимална е конфигурация 6, която е избрана за

използване в следващите етапи на проектиране.

7.6. Изводи

Използването на допълнителна ос на движение, осигурява мобилност на

ПР, с цел разширяване на неговата работна зона.

Дефинирани са допълнителни стъпки, при разработване на УП за ПР с

използване на CARC системи, при наличие на допълнителна ос на движение.

С използване на виртуален подвижен пулт, на Fanuc LR Mate 200iD/7L в

средата на ROBOGUIDE, е направено конфигуриране на допълнителна ос на

движение.

Направено е конфигуриране на допълнителната ос на движение на ПР в

средата на RobotStudio, чрез използване на библиотеките, с индустриално

оборудване, доставяни със системата.

Дефинирани са основните стъпки при проектиране на роботизирани клетки

с използване на CARC системи.

Тези стъпки са приложени при проектиране на роботизирана клетка за

изпълнение на “Pick and Place” операции в средата на ROBOGUIDE. В

резултат на това са разработени шест конфигурации на проектираната клетка.

С помощта на ROBOGUIDE са определени характеристики, използвани за

оценка на конфигурациите. Въз основа на направената оценка е избран

оптимален вариант на проектираната клетка, съгласно критериите на

заданието.

Получените резултати, показват, че съвременните CARC системи са мощен

инструмент не само програмиране на ПР, но и за проектиране на роботизирани

клетки.

Дефинираните стъпки са универсални и могат да се използват при работа

с различни CARC системи.

30

НАУЧНО-ПРИЛОЖНИ И ПРИЛОЖНИ ПРИНОСИ

НАУЧНО ПРИЛОЖНИ ПРИНОСИ

НПП.1 Разработена е универсална методика, за генериране на управляващи

програми за промишлени роботи с използване на CARC системи и са

анализирани възможностите за използване на API при нейното

прилагане.

НПП.2 Разработена е класификация по три признака на видовете атаки срещу

роботизирани производствени системи и са дадени препоръки за

защита от тези атаки.

ПРИЛОЖНИ ПРИНОСИ

ПП.1 Направен е сравнителен анализ на най-често използваните езици за

програмиране от високо ниво, използвани в API при експлоатация на

ПР и областите на тяхното приложение.

ПП.2 Разработени и сравнени са сървърен и клиентски код за TCP/IP

свързване с използване на езиците за програмиране на ПР FANUC

KAREL и ABB RAPID.

ПП.3 Разработен и анализиран е код, за криптиране на данни при

експлоатация на ПР, с използване на различни езици за програмиране

от високо ниво, поддържани в API при експлоатация на ПР.

ПП.4 Разработен е сървър, написан на KAREL, които може да се използва,

с клиентска програма, написана на различни езици за програмиране от

високо ниво, поддържани в API при експлоатация на ПР.

ПП.5 Дефинирани са основните стъпки при проектиране на роботизирани

клетки с използване на CARC системи, които са универсални и могат

да се използват при работа с различни CARC системи.

31

СПИСЪК НА ПУБЛИКАЦИИТЕ ПО ДИСЕРТАЦИОННИЯ ТРУД

1. Владимиров Б., Мрежова сигурност при отдалечено програмиране на

промишлени роботи, Автоматизация на дискретното производство, бр. 3

юли 2021, стр. 171-175, ISSN 2682-9584

2. Владимиров Б., Ст. Николов, Сл. Димитров, Приложение на промишлени

роботи в опасни за човешкото здраве производствени среди,

Автоматизация на дискретното производство, бр. 4 юли 2022, стр. 94-98,

ISSN 2682-9584

3. Vladimirov B., Nikolov St., Tsolov S., Programming Industrial Robots in the

Fanuc ROBOGUIDE Environment, Engineering Proceedings,

DOI: 10.3390/engproc2024070020, 2024 - Q4, Scopus

4. Vladimirov B., Nikolov St., Remote transmission of information during the

operation of robots Fanuc by using Fanuc ROBOGUIDE, Annals of DAAAM

and Proceedings of the International DAAAM Symposium, pp. 332-339,

https://doi.org/10.2507/35th.daaam.proceedings.045, 2024 – Scopus

5. Nikolov St., Vladimirov B., Designing robotic cells in the environment

ROBOGUIDE, Proceeding of 34th International Scientific and Technical

Conference Automation of Discrete Production Engineering 2025, Az-buki

National Publishing House, Bulgaria, https://doi.org/10.53656/adpe-2025.06

ЦИТИРАНЕ НА ПУБЛИКАЦИИТЕ ПО ДИСЕРТАЦИЯТА

Публикация 3 е цитирана в:

1. Taj, S., Awasthi, S., Dahri, H., Hashsham, S., Khan, R., The Evolution of

Industrial Automation and Cybersecurity Risks, Advancing Cybersecurity in

Smart Factories through Autonomous Robotic Defenses Book Chapter, 2025,

ISBN 979-833730585-1, 979-833730583-7, Pages 397 – 429, DOI: 10.4018/979-

8-3373-0583-7.ch015

Публикация 4 е цитирана в:

1. Sokolov, O., V., Andrusyshyn, A., Iakovets, V., Ivanov, Intelligent Human–Robot

Interaction Assistant for Collaborative Robots, Electronics (Switzerland) Article

Open Access, 2025 Multidisciplinary Digital Publishing Institute (MDPI), ISSN

20799292, Volume 14, Issue 6, Article number 1160,

DOI: 10.3390/electronics14061160

2. Di, Gai, Xu, Weiyan, Simulation Design of Industrial Robot Handling

Workstation Based on ROBOGUIDE, Lecture Notes in Electrical Engineering,

Conference Volume 1441 LNEE, Pages 242 – 249, Book Series ISSN 18761100,

Springer Science and Business Media Deutschland GmbH, 2025, ISBN 978-

981968002-3, DOI: 10.1007/978-981-96-8003-0_27

Научноизследователски проект в помощ на докторант, към НИС на ТУ- София

2024 г., договор №241ПД0024-06

Тема: „Изследване на възможностите за програмиране на промишлени роботи

с използване на API“

Ръководител: проф. д-р инж. Стилиян Николов Николов

Докторант: маг. инж. Борян Чавдаров Владимиров

https://www.scopus.com/pages/publications/105001100341?origin=resultslist

32

SUMMARY

PROGRAMMING OF INDUSTRIAL ROBOTS USING API

Eng. Boryan Chavdarov Vladimirov MSc

In the dissertation thesis, the possibilities provided by different computer

systems for using API in the operation of IR (Industrial Robots) are investigated.

In the first chapter, a brief historical overview of the history of IR, control

systems, and programming methods used in the operation of IR is made. The main

functions of the application programming interface API (Application Programming

Interface) are reviewed.

In the second chapter, high-level programming languages used in automated

programming of IR are reviewed. A comparative analysis of the capabilities of the

programming languages ST, ABB, RAPID and Fanuc KAREL is performed. The

use of programming languages Fanuc Karel and ABB RAPID in automated

programming of IR is analysed.

The third chapter examines the main communication protocols through which

remote operation of IR can be achieved. Server and client code for TCP/IP

connection are developed and compared using IR programming languages Fanuc

KAREL and ABB RAPID.

A classification of the types of attacks against robotic production systems is

developed, and recommendations for protection against these attacks are provided.

In the fourth chapter, a comparative analysis of the functional capabilities of

various modern CARC systems is performed, based on ten criteria. A universal

methodology, including eight stages, is developed for generating Control Programs

(CPs) for IR using CARC systems.

The fifth chapter discusses the use of API in the operation of IR. Some of the

main characteristics when using languages Fanuc KAREL, ABB RAPID, C++, C#,

Python and PERL in the exploitation of IR are compared. Code for data encryption

in the operation of IR, using various high-level programming languages used in the

API during IR operation, is developed and analysed.

In Chapter 6, the methodology developed in Chapter 4 is used for programming

IR in the environment of Fanuc ROBOGUIDE and ABB ROBOT STUDIO, and the

obtained results are analysed.

In Chapter 7, the specifics of programming IR with an additional axis are

discussed. The main steps in designing robotic cells using CARC systems are

defined. These steps are applied to the design of a robotic cell for performing “Pick

and Place” operations in the environment of Fanuc ROBOGUIDE.

TECHNICAL UNIVERSITY – SOFIA

Faculty of Mechanical Engineering

Department of Automation of Discrete Manufacturing

Eng. Boryan Chavdarov Vladimirov MSc

PROGRAMMING INDUSTRIAL ROBOTS

USING API

AUTHOR ABSTRACT
of a dissertation for the acquisition of an educational and scientific degree

"DOCTOR"

Field: 5. Technical Sciences

Professional field: 5.1 Mechanical Engineering

Scientific specialty: Production Automation

Scientific supervisor: Prof. Stiliyan Nikolov PhD

SOFIA, 2025

2

The dissertation was discussed and approved for defense by the Department

Council of the Department of Automation of Discrete Production Engineering at the

Faculty of Mechanical Engineering of TU-Sofia at a regular meeting held on

November 10, 2025.

The public defense of the dissertation will take place on January 29, 2025, at 1:00

p.m. in the Conference Hall of the Library and Information Center of the Technical

University of Sofia at an open meeting of the scientific jury, appointed by Order No.

OZ-5. 1-104 / 04.12.2025 of the Rector of TU-Sofia, composed of:

1. Prof. Pancho Tomov, PhD – Chair

2. Assoc. Prof. Velizar Zaharinov, PhD – Scientific Secretary

3. Prof. Mladen Milushev, PhD

4. Prof. Nikolay Stoimenov, PhD

5. Assoc. Prof. Ivanka Peeva, PhD

Reviewers:

1. Assoc. Prof. Velizar Zaharinov, PhD

2. Assoc. Prof. Ivanka Peeva, PhD

The defense materials are available to interested parties at the office of the

Faculty of Mechanical Engineering at TU-Sofia, block No. 4, room No. 3242.

The doctoral student is a part-time doctoral student at the Department of

Automation of Discrete Production Engineering at the Faculty of Mechanical

Engineering. The research for the dissertation was conducted by the author, some of

which was supported by research projects.

Author: Eng. Boryan Vladimirov, MSc

Title: Programming Industrial Robots Using API

Circulation: 30 copies

Printed at the Technical University of Sofia

3

I. GENERAL CHARACTERISTICS OF THE DISSERTATION

Relevance of the problem

Modern industrial robots (IR) are highly energy efficient and capable of

performing a wide range of tasks. This makes their use in various areas of industry

increasingly attractive and cost-effective, ensuring the automation of various

production activities and a safe working environment.

The development of computer technologies has made it possible, through the use

of Application Programming Interface (API), to create user applications that

automate the development of control programs and their transfer to the IRs used.

All this, along with the need for highly qualified personnel for programming IR,

makes the issues related to researching the possibilities for automated and remote

programming of IR relevant.

Purpose of the dissertation, main tasks, and research methods

The aim of this dissertation is to investigate the possibilities offered by various

computer systems in the development of control programs for industrial robots, their

transfer to industrial robots, and the possibilities for using APIs in the operation of

these systems. To achieve this goal, the following tasks are to be accomplished:

1. Analysis of methods for programming industrial robots - IR

2. Analysis of the capabilities of different computer systems in the

development of control programs for programming industrial robots

3. Development of a methodology for developing control programs for

industrial robots using computer systems

4. Research on the capabilities that API provides for programming industrial

robot using computer systems

5. Analysis of methods and means for data transfer in remote programming

of IR

6. Development of an API application and data transfer system for remote

programming of PR

7. Application of the developed applications and evaluation of their

functionality

The research was conducted in a digital environment using computer and

communication technologies

4

Scientific novelty

• A universal methodology has been developed for generating control

programs for IR using CARC systems.

• The possibilities for using API in programming and operating IR have

been determined.

• A classification of hacker attacks against robotic production systems and

the problems they cause has been developed, and recommendations for

protection against these attacks have been provided.

Practical applicability

Using the API, the following have been developed: server and client code for

TCP/IP connection; a server written in KAREL and code for data encryption when

operating the IR/Industrial robot/. The basic steps in designing robotic cells using

CARC systems have been defined.

The results obtained are used in the training of students in the Department of

Discrete Manufacturing Automation.

Approval

The results were validated using the IR/Industrial robot/ and programming

software available at the Department of Discrete Manufacturing Automation.

Publications

The main achievements and results of the dissertation are published in five

scientific publications, one of which is independent, while the others are co-authored

with the scientific supervisor and colleagues from the Department of Automation of

Discrete Manufacturing.

Three of the publications were presented in Bulgaria at the International

Scientific Technical Conference "Automation of Discrete Manufacturing," and two

at scientific forums abroad.

Two of the publications are indexed in Scopus.

Structure and capacity of the dissertation

The dissertation is 193 pages long and includes an introduction, seven chapters

addressing the main tasks, a list of main contributions, a list of publications related

to the dissertation, and a bibliography. A total of 138 literature sources are cited, 58

of which are in Latin and 7 in Cyrillic, while the rest are Internet addresses. The

work includes a total of 89 figures and 13 tables. The numbers of the figures and

tables in the abstract correspond to those in the dissertation..

5

II. CONTENTS OF THE DISSERTATION

CHAPTER 1 OVERVIEW AND ANALYSIS

1.1. History of the development of industrial robots

The use of robots in industry became of paramount importance in the last

century. The stages of industrial robot evolution are examined.

1.2. Types of Industrial Robots(IR) and Their Areas of Application

Although industrial robots vary in design depending on the tasks they perform,

the most common are the so-called automated „arm’s“. These robots can be

classified into several different categories based on movement, application,

architecture, model, etc.

The main types of industrial robots are discussed according to the International

Federation of Robotics [33].

1.3. Industrial Robot Control Systems

The building blocks of control systems used in work and robotic devices

operating in both industrial and non-industrial environments are examined,

according to ISO 8373:2012 (revised in ISO 8373:2021 [38]).

1.4. Programming of the Industrial robot

Programming involves defining the desired actions and movements of the

industrial robot so that it can perform them without operator intervention. The

interpretation of the control program in the robot is performed by the controller. It

is the part of the robot that connects the operator/programmer with the other

elements (external and internal sensors, peripheral equipment, etc.). The main

approaches used in robot programming are discussed.

1.5. Automating the process of generating control programs using API

An application programming interface (API) is a tool that enables integration

between different applications by allowing users to use a programming language

within another application.

Such applications can automate certain common or repetitive tasks that users

perform. Other applications can combine commands in such a way as to provide

additional functionality tailored specifically to the needs of certain companies and

industries.

Computer-aided engineering (CAE) systems offer users various options for using

APIs, which can be divided into two groups.

6

1.6. Conclusions

Industrial robots play a key role in the automation of industrial processes. They

perform a variety of operations: welding, material handling, assembly, painting, and

many others, with the complexity of the tasks performed constantly increasing.

The use of industrial robots is transforming most industrial systems. This

transformation is influenced by:

• Implementation of the Internet of Things - more and more, robots will use

intelligent sensors to collect information and improve process efficiency.

• Use of big data analysis - the data collected by industrial robots must be

organized into systems that facilitate their analysis and reporting on their

status.

• Use of virtual solutions - virtual solutions make it possible to analyze robotic

systems without interrupting production.

• Use of open automation architectures - coordination between manufacturers

is necessary to create standards and documentation that facilitate the

introduction of industrial robots into a real production environment.

The ability to easily and effectively program industrial robots is critical to their

use and the optimization of production processes.

The use of different computer systems and software platforms that enable the

programming, simulation, and control of industrial robots significantly speeds up

the process of controlling industrial robots and reduces the likelihood of errors.

Issues related to the use of different computer systems in the control of industrial

robots are becoming increasingly relevant in connection with the concept of Industry

4.0.

Based on the review and analysis, the objective of this dissertation is defined as

investigating the possibilities offered by different computer systems for using APIs

in the operation of industrial robots.

CHAPTER 2 HIGH-LEVEL PROGRAMMING LANGUAGES USED IN

AUTOMATED PROGRAMMING OF INDUSTRIAL ROBOT

2.1. FANUC KAREL programming language

Fanuc KAREL [43] is a programming language developed in the 1980s by GMF

(General Motors Fanuc) Robotics, a joint venture between the Japanese company

Fanuc and the American automotive giant GM (General Motors). GMF Robotics

was one of the first companies to begin mass production of industrial robot for the

automotive industry.

7

2.2. Structure of the KAREL language

KAREL includes structures and models common to high-level languages, as

well as functions developed specifically for Fanuc PLC control. It features strictly

typed variables, constants, custom types, procedures, functions, and provides access

to various built-in functions that may not be available through the TP (Teach

Pendant).

2.3. ABB RAPID programming language

The RAPID language [44] was created by ABB Robotics in the early 1990s as

part of the development of a new generation of PRs. It was designed to make PR

programming easier, more intuitive, and more powerful by providing better control

over movements, inputs/outputs, and error handling. RAPID was introduced

alongside the S4 controller and has undergone improvements and enhancements

over the following decades, particularly with the IRC5 controllers, which added

features such as network communication, IoT integration, and AI capabilities.

Table 2.3 Characteristics of FANUC KAREL and ABB RAPID

Characteristics Fanuc KAREL ABB RAPID

Platform Industrial robot Fanuc Industrial robot ABB

Language type Procedural, highly typed,

similar to Pascal/Ada

Procedural, simplified

Program format PROGRAM name ... END

name;

MODULE name ...

ENDMODULE

Declaring variables VAR speed : INTEGER; VAR num speed;

Data type INTEGER, REAL,

BOOLEAN, STRING[n],

ARRAY, XYZWPR, TRANS

num, bool, string, array,

robtarget, jointtarget, pose

Conditional operators IF ... THEN ... ELSE ...

ENDIF;

IF ... THEN ... ELSE ...

ENDIF

Loops FOR ... ENDFOR;

WHILE ... ENDWHILE;

FOR ... ENDFOR;

WHILE ... ENDWHILE;

Functions and procedures FUNCTION name : type ...

END name;

ROUTINE name ... END

name;

FUNC type name ...

ENDFUNC;

PROC name ... ENDPROC;

Robot movement Via TP programs or position

registers

GET_POS_REG,

SET_POS_REG

MoveJ p1, v100, z10, tool1;

MoveL p2, v50, fine, tool1;

Input/Output (I/O) Access through built-in system

procedures

(IO_STATUS,

SET_PORT_VAL)

SetDO do1, 1;

WaitDI di1, 1;

Error handling
BEGIN ... ERROR ... END

TRAP ... ENDTRAP

ERROR ... ENDERROR

8

Table 2.4 Comparison of the programming languages ST, ABB RAPID, and Fanuc

KAREL

Characteristics ST (Structured Text) ABB RAPID FANUC KAREL

Platform PLC (Siemens,

Beckhoff, Allen-

Bradley, Schneider,

etc.)

ABB industrial robots

(IRC5 controllers)

FANUC industrial

robots (R-J3, R-30iA, R-

30iB controllers)

Language type High level,

standardized (IEC

61131-3), similar to

Pascal/Modula/C

Specialized language

for industrial robot,

procedural

Specialized language for

PR, procedural, similar

to Ada/Pascal

Syntax Similar to Pascal and

C; standard for PLC

Simplified, intuitive

for robotic

movements

Highly structured,

similar to Ada/Pascal

Ease of

learning

Medium – requires

PLC knowledge

High – easy for

operators and

programmers

More complex –

requires more in-depth

knowledge

Flexibility Versatile – process

control, logic,

communications

Medium – powerful

for robots, limited

outside this area

Low – works only with

FANUC controllers

Usage PLC programming:

logical operations,

machine control,

network

communication

ABB IR

programming:

movements, logic,

sensors, integration

FANUC IR

programming: logic,

sensors, advanced

functions, system

control

Robot

movements

Through external

libraries, limited

support

Built-in and powerful

motion control:

MoveJ, MoveL,

MoveC

Indirectly via position

registers

(GET_POS_REG,

SET_POS_REG) or TP

programs

Program

structure

Functions,

procedures, loops

Modules, procedures

(PROC/FUNC),

objects

Programs, subroutines,

ROUTINE/FUNCTION,

global and local

variables

Applications Machine automation,

processes, SCADA

integration

Robotic applications:

welding, assembly,

palletizing, CNC,

vision processing,

networks

Advanced industrial

robot programming:

logic, sensors, vision,

networks

Error handling TRY...CATCH,

standard exception

mechanism

ERROR and TRAP

blocks for processing

BEGIN ... ERROR ...

END and ON ERROR

constructs

Network

support

Modbus, EtherNet/IP,

PROFINET, and

other standard PLC

protocols

TCP, UDP, FTP,

Socket

communication

TCP, FTP (no UDP);

limited network

integration

9

2.4. Structure of the RAPID language

The RAPID programming language is similar to most ST programming

languages and closely resembles the C language. It is structured and easy to learn,

providing a rich set of instructions and functions for controlling the movements of

the industrial robot, processing signals, communicating with external devices, and

much more.

2.5. Comparative analysis of the capabilities of high-level programming

languages used in automated programming of industrial robot

Fanuc KAREL and ABB RAPID are two different programming languages used

to control PLCs. Although both languages have similar objectives, they differ in

structure, syntax, and purpose. A comparison of the characteristics of the two

languages is given in Table 2.3.

Despite the specifics of KAREL and RAPID, anyone familiar with C-style

programming languages should find it relatively easy to program PLCs using these

languages.

Table 2.4 provides a comparison of the ST, ABB RAPID, and Fanuc KAREL

programming languages used in industrial automation.

2.6. FANUC KAREL and ABB RAPID in the context of Industry 4.0

The Fanuc KAREL and ABB RAPID programming languages provide

additional capabilities for PR management, compatible with modern Industry 4.0

concepts such as the Internet of Things (IoT), Cloud Technologies (CT), Artificial

Intelligence (AI), and intelligent automation.

2.7. Conclusions

The programming languages ST, ABB RAPID, and Fanuc KAREL, used in

industrial automation, have some common features, but each of them is developed

for a specific platform and has its own unique characteristics.

The additional capabilities that the KAREL and RAPID programming languages

provide to users when programming PLCs are analyzed.

A comparative analysis of the capabilities of the ST, ABB RAPID, and Fanuc

KAREL programming languages in automated PLC programming is made.

The use of the Fanuc KAREL and ABB RAPID programming languages is

analyzed in the context of the use of: the Internet of Things; cloud technologies;

artificial intelligence and intelligent automation in the operation of industrial robot.

CHAPTER 3 DATA TRANSFER DURING THE OPERATION OF THE

INDUSTRIAL ROBOT

3.1. Data transfer protocols for the operation of industrial robots

Currently, there are many technical solutions used for remote programming and

control of production equipment executing a given production program.

10

A comparison of the network functions and protocols supported in the high-level

programming languages discussed in Chapter 2 used in the operation of industrial

robot is given in Table 3.1.
Table 3.1 Network functions and protocols in ST, FANUC KAREL, and ABB RAPID

Function/

Protocol
ST (PLC)

FANUC

KAREL
ABB RAPID

Notes/

limitations

Supported

network protocols

TCP/IP, UDP, Modbus

TCP, OPC-UA, MQTT,

ProfiNet, EtherNet/IP

TCP/IP, FTP,

HTTP, Socket

Messaging

TCP/IP, UDP*,

FTP, HTTP,

*RAPID: UDP is

not built-in;

requires external

configuration;

KAREL does not

have UDP

Socket creation

(TCP/IP

client/server)

SysSockCreate(),

SysSockBind(),

SysSockConnect()

Communication via

configured tags,

MSG_DISCO and

OPEN FILE

Web Services

(REST/SOAP),

Socket Messaging

UDP sockets on

RAPID/KAREL

require external

configuration or

scripts

Data sending SysSockSend() Socket Send

Messaging

SocketCreate,

SocketBind,

SocketConnect

Data receiving SysSockRecv() Socket Receive

Messaging

SocketSend

Socket closing SysSockClose() Closing via

standard file

operations

SocketReceive

(included in the

manual, but not

always used)

FTP

communication

SysFTPClientPut(),

SysFTPClientGet()

CALL_PROG SocketClose

HTTP/HTTPS

support

SysWebClientRequest()

(on some PLCs)

HTTP_REQ Built-in FTP

server, access via

GetFTP

UDP

communication

SysSockSendTo(),

SysSockRecvFrom()

Not supported HTTP and Web

Services

(REST/SOAP)

KAREL does not

have UDP; RAPID

– only through

additional

configuration and

scripts

WebSockets Limited support Limited support UDPSend,

UDPReceive

No universal built-

in WebSocket

support

Industrial

protocols

OPC UA, Modbus TCP,

ProfiNet, EtherNet/IP,

MQTT

OPC UA (with

license), Modbus

TCP, EtherNet/IP,

ProfiNet

Possible via Web

Services

KAREL: OPC UA

requires a license;

RAPID – built-in,

full support

JSON/XML

support

Possible with libraries

(depending on

manufacturer)

Manual string

processing

OPC UA (built-

in), Modbus TCP,

ProfiNet,

EtherNet/IP

KAREL: manual

processing; ST PLC

– depends on

available libraries

Built-in Web

Server

Supported on some PLCs Limited support Built-in parsing

for JSON/XML

KAREL: limited;

RAPID – full,

including ABB

Ability interface

Cloud integration MQTT, OPC-UA to

cloud services

Requires external

scripts – FANUC

FIELD SYSTEM

Supports ABB

Ability Cloud

KAREL: TP script

or FIELD System

required; ST PLC –

depends on libraries

11

Table 3.2 Server code for TCP/IP connection

FANUC KAREL ABB RAPID

PROGRAM tcp_server

%STACKSIZE = 4000

%NOLOCKGROUP

%NOPAUSE=ERROR+COMMAND+TPENABLE

%ENVIRONMENT uif

%ENVIRONMENT memo

%ENVIRONMENT flbt

%INCLUDE klevkeys

%ENVIRONMENT bynam

%INCLUDE klevkmsk

%ENVIRONMENT fdev

%INCLUDE klevccdf

%ENVIRONMENT kclop

%ENVIRONMENT sysdef

VAR

file_var : FILE

tmp_int : INTEGER

tmp_str1 : STRING[128]

tmp_int1 : INTEGER

tmp_str : STRING[128]

status : INTEGER

entry : INTEGER

BEGIN

SET_FILE_ATR(file_var, ATR_IA)

SET_VAR(entry, 192.168.1.3 '*SYSTEM*', '$HOSTS_CFG

[3]. $SERVER_PORT', 6008, status)

WRITE TPPROMPT('Connecting.', status, CR)

MSG_CONNECT('S3', status)

WRITE TPPROMPT('Connect Status = ', status, CR)

IF status = 0 THEN

WRITE TPPROMPT('Opening', CR)

FOR tmp_int1 = 1 TO 20 DO

OPEN FILE file_var ('rw', 'S3:')

status = IO_STATUS(file_var)

WRITE TPPROMPT(status, CR)

IF status = 0 THEN

FOR tmp_int = 1 TO 1000 DO

WRITE TPPROMPT ('Reading', CR)

BYTES_AHEAD (file_var, entry, status)

WRITE TPPROMPT (entry, status, CR)

READ file_var (tmp_str::10)

status = IO_STATUS(file_var)

WRITE TPPROMPT(status, CR)

ENDFOR

CLOSE FILE file_var

ENDIF

ENDFOR

WRITE TPPROMPT('Disconnecting..', CR)

MSG_DISCO('S3:', status)

WRITE TPPROMPT('Done.', CR)

ENDI

END tcp_server

MODULE Module1

 VAR socketdev serverSocket;

 VAR socketdev clientSocket;

 VAR string data;

 PROC main()

 !Add your code here

 SocketCreate serversocket;

 SocketBind serverSocket, “127.0.0.1” ,

5000;

 SocketListen serverSocket;

 SocketAccept serverSocket, clientSocket,

\Time:= WAIT_MAX;

 SocketReceive clientSocket \Str:=data;

 SocketSend clientSocket \Str:=

“received”;

 SocketClose clientSocket;

 SocketClose serverSocket;

 ERROR

 IF ERRNO=ERR_SOCK_TIMEOUT

THEN

 RETRY;

 IF ERRNO=ERR_SOCK_TIMEOUT

THEN

 RETRY;

 ELSEIF ERRNO=ERR_SOCK_CLOSED

THEN

 SocketClose clientSocket;

 SocketClose serverSocket;

 SocketCreate serverSocket;

 SocketBind serverSocket, “127.0.0.1” , 5000 ;

 SocketListen serverSocket;

 SocketAccpet serverSocket,clientSocket,

\Time:=WAIT_MAX;

 RETRY;

 ELSE

 stop;

 ENDIF

 ENDPROC

ENDMODULE

Table 3.2 provides a comparison of server code for TCP/IP connection

developed with Fanuc KAREL and ABB RAPID.

12

Table 3.3 Client code for TCP/IP connection

FANUC KAREL ABB RAPID

PROGRAM tcp_client

%STACKSIZE = 4000

VAR

 file_var : FILE

 status : INTEGER

 recv_str : STRING[128]

 send_str : STRING[16] := "Hello from client"

 bytes_ahead : INTEGER

 i : INTEGER

BEGIN

 MSG_CONNECT('S3', status)

 WRITE TPPROMPT('Connect Status = ', status, CR)

 IF status = 0 THEN

 OPEN FILE file_var ('rw', 'S3:')

 status = IO_STATUS(file_var)

 IF status = 0 THEN

 FOR i = 1 TO 10 DO

 WRITE TPPROMPT('Sending data...', CR)

 WRITE file_var(send_str)

 status = IO_STATUS(file_var)

 IF status <> 0 THEN

 WRITE TPPROMPT('Error sending data',

CR)

 EXIT FOR

 ENDIF

 BYTES_AHEAD(file_var, bytes_ahead, status)

 IF bytes_ahead > 0 THEN

 READ file_var(recv_str::bytes_ahead)

 WRITE TPPROMPT('Received: ', recv_str,

CR)

 ELSE

 WRITE TPPROMPT('No data available to

read', CR)

 ENDIF

 ENDFOR

 CLOSE FILE file_var

 ELSE

 WRITE TPPROMPT('Error opening socket file',

CR)

 ENDIF

 MSG_DISCO('S3', status)

 WRITE TPPROMPT('Disconnected', CR)

 ELSE

 WRITE TPPROMPT('Connection failed', CR)

 ENDIF

END tcp_client

MODULE Module1

VAR socketdev clientSocket;

VAR string data;

VAR string recvData;

VAR num errStatus;

PROC main()

! Create a client socket SocketCreate

clientSocket;

! Attempt to connect to the server at

127.0.0.1:5000

 SocketConnect clientSocket, "127.0.0.1", 5000

\Timeout:=5000; ! Check for connection errors

IF ERRNO <> 0 THEN TPWrite "Connection

failed with error: "; TPWrite ERRNO; RETURN;

ENDIF "

! Send message to server

data := "Hello Server"; SocketSend clientSocket

\Str:=data; ! Receive response from server

SocketReceive clientSocket \Str:=recvData;

! Displaying the received data TPWrite "Received

from server: " & recvData;

! Closing the client socket SocketClose

clientSocket; ENDPROC

ENDMODULE

When operating industrial robots, two interrelated groups of tasks can be

distinguished: generating control programs and transferring data between the robot

controller and the platform on which the remote programming and control software

is installed.

13

3.2. Connecting industrial robot to a network

Connecting industrial robots to a network allows for their integration with

existing automated production systems and also offers opportunities for remote

control, monitoring, and data analysis.

Table 3.3 provides a comparison of client code for TCP/IP connection developed

with Fanuc KAREL and ABB RAPID.

3.3. Network security during industrial robot operation

As industrial networks become more complex, threats to their security also

increase, and designers of such technical solutions must take into account all types

of threats in order to ensure the security of the transmitted information.

Remote programming of industrial robots is based on a secure network

connection through information encryption and network devices that ensure the

security of the transmitted information.

Fig. 3.2 Classification of attacks targeting robotic manufacturing systems

3.4. Attacks during industrial robot operation

Based on an analysis of the types of attacks against robotic production systems,

a classification of these attacks has been developed according to three criteria, as

shown in Fig. 3.2.

14

Table 3.4 Types of attacks against robotic systems

Type of attack Defense approaches

Attacks against industrial robot control systems

Change of parameters of

the Industrial Robots

controller

Access control, anomaly detection, parameter validation, two-factor

authentication (2FA), reinstallation from backup

Change in the user interface

of industrial robots

Access control, data monitoring, communication encryption, regular

backups

Change in the calibration of

Industrial Robots

Access control, calibration verification, anomaly detection, digital

signatures, regular backups, recalibration

Change in the program

executed by Industrial

Robots

Control and restriction of access, backup copies of programs, program

reloading

Attacks through

vulnerabilities in Industrial

Robot software

Access control, penetration testing to detect vulnerabilities, regular

backups, regular software updates.

Attacks against the control of robotic manufacturing systems

Physical attacks via the

network connection

Control and restriction of access to network ports, protected areas,

physical protection of the network, VPN protection

Man-in-the-Middle

(MITM) attacks

Network traffic encryption, VPN additional firewall, daily backup of

the robotic system, network segmentation

Distributed Denial-of-

Service (DDoS) attacks

Network traffic monitoring, firewalls, DDoS protection, network

segmentation

Attacks on industrial

control systems

System monitoring and analysis, network segmentation, ICS system

protection

Attacks against the company's management system

Attacks against suppliers

and partners - Supply Chain

Attacks

Data reception network control, remote network monitoring, software

verification, digital signatures

Attacks through persistent

threats Advanced Persistent

Threats

Monitoring network traffic to detect suspicious activity, training staff

to identify persistent attacks, regular audits

Ransomware attacks Monitoring for malicious code detection, regular data backups,

antivirus protection, network segmentation

Social engineering Security policies, security testing, restricting the sharing of sensitive

information, verification of users requesting access

These signs are:

➢ Attacks against the industrial robot administration

The first group consists of attacks targeting the Industrial Robots controller.

They aim to change the behavior of Industrial Robots during their operation.

➢ Attacks against the control of robotic manufacturing systems

The second group consists of attacks targeting the network to which the

industrial robot controller is connected. Their aim is to penetrate the robotic system's

control system and disrupt its operation.

➢ Attacks against the company's management system

The third group consists of attacks aimed at gaining access to robotic systems

without the necessary rights, with the aim of spreading malware that disrupts the

15

operation of the systems.

The effects of the attack are: unauthorized access; production stoppage; data

loss; financial losses; reputational risk.

Table 3.4 lists the approaches that can be used to protect against the attacks

discussed.

3.5. Data encryption in the operation of industrial robots

The advantage of using open source systems is that they are free to be further

developed and technologically advanced according to user needs.

When using encryption devices, the security of the transmitted information is

ensured, thus preventing the possibility of loss or unauthorized access to sensitive

information. At present, the security of industrial networks cannot be overlooked, as

a result of which more and more affordable data encryption solutions are available

on the market.

3.6. Conclusions

Connecting Industrial Robots (IR) to a network is key to modern industrial

applications. The ability to communicate over a network not only improves

productivity but also allows remote control and monitoring of the robotic system.

The main communication protocols through which remote operation of

industrial robots can be achieved are examined, and the network functions embedded

in the programming languages of Industrial Robots ST, Fanuc KAREL, and ABB

RAPID are analyzed.

Server and client code for TCP/IP connection using the PR programming

languages Fanuc KAREL and ABB RAPID are developed and compared.

A classification of the types of attacks against robotic production systems based

on three criteria is developed, and recommendations for protection against these

attacks are given.

Data encryption in PLC programming plays an important role in ensuring the

security and confidentiality of communication between robotic systems and external

devices. This is especially important when the robotic system is integrated into an

industrial network where the exchange of sensitive data may be exposed to attacks

and unauthorized access. Encryption helps protect data and communication

channels, which is critical to maintaining the confidentiality and integrity of the

system.

An example of socket communication protection during the operation of Fanuc

Industrial Robots has been developed using the KAREL language.

CHAPTER 4 AUTOMATION PROGRAMMING OF INDUSTRIAL

ROBOTS

4.1. Computer systems for programming industrial robots

These are CARC (Computer Aided Robot Control) [46] systems, which can also

be found as OLPE (Off-line Programming Environments). They apply the latest

16

achievements in the field of computer technology and engineering computer

graphics.

CARC systems use 3D models of IR and other production equipment, through

which robotic production systems can be built, their operation can be simulated and

analyzed, and control programs can be generated for the IR included in them.

4.2. Analysis of the capabilities of the main modern CARC systems

Taking into account the diversity of CARC systems currently offered by

different manufacturers, a study of their functional capabilities was conducted using

publicly available sources, based on the following ten criteria:

• availability of specialized programming modules for performing various

PR tasks;

• availability of libraries with 3D models of various IR;

• availability of libraries with 3D models of end effector;

• availability of libraries with 3D models of production equipment;

• possibility of using a virtual control panel for IR management;

• possibility to use high-level industrial robot programming languages and

API;

• possibility to simulate and optimize the operation of IR;

• possibility to design and analyze the operation of robotic cells;

• possibility to exchange data with other CAx systems;

• support for various IR controllers.

The results of the study are presented in Appendix 1. The data there show that

the main differences between the CARC systems available on the market are

related to their ability to exchange data with other CAx systems and support IR

controllers offered by different companies.

4.3. Methodology for generating control programs for industrial robots using

CARC systems

Regardless of the variety of CARC systems currently available, the main steps

in working with these systems largely overlap. Here, a methodology is proposed that

describes the main steps in working with CARC systems necessary for generating

Control Programs (CP) for industrial robot, and the possibilities for using API in this

process are analyzed.

The main steps required for generating CP for Industrial Robots (IR), regardless

of the CARC system used, are given in the developed methodology shown in Fig.

4.1.

17

Fig. 4.1 Methodology for generating a IR management plan using CARC systems

They are as follows:

Stage 1 Selection of an industrial robot

Stage 2 Selection of an end effector

Stage 3 Selection of additional equipment

Stage 4 Development of the control program

Stage 5 Simulation of the developed program

Stage 6 Post-processing of the developed program

Stage 7 Transfer of the program to the robot controller

Stage 8 Execution of the developed program

4.4. Conclusions

A comparative analysis of the functional capabilities of various modern CARC

systems available on the market has been performed based on ten criteria.

18

Modern CARC systems provide users with extensive capabilities for generating

control program’s for industrial robot’s, allowing the use of various 3D models,

virtual consoles, APIs, and high-level programming languages in the control system

development process.

A methodology comprising eight stages has been developed for generating

control program for industrial robot using CARC systems.

The main steps in using the developed methodology are discussed and the

possibilities for using APIs in this process are analyzed.

The developed methodology for generating a control program’s for IR using

CARC systems is universal and does not depend on the CARC system used and the

industrial robot for which the industrial robot is generated.

CHAPTER 5 USE OF API IN THE OPERATION OF INDUSTRIAL ROBOT

5.1. API in computer systems for programming industrial robot

Taking into account the individual steps in the proposed methodology and the

analysis of the possibilities that modern CARC systems offer users for generating

Control Programs/CP/ for Industrial Robots/IR/, the use of API in this process can

be used for:

• developing software applications for creating 3D models of various

components for designing robotic cells;

• developing applications for remote programming of IR;

• developing applications for remote data exchange between IR and a host

computer.

The API provides an interface that allows different software applications to

communicate and interact with each other. In the context of IR operation, the API

plays a key role in the following aspects:

5.2. Programming languages used in the API when operating Industrial

Robots - IR

Table 5.1 provides a comparison of some key characteristics when using Fanuc

KAREL, ABB RAPID, C++, C#, Python, and Perl languages in the operation of

industrial robots.

19

Table 5.1 Comparison of Fanuc KAREL, ABB RAPID, C++, C#, Python, and Perl

languages in industrial robot operation

Function /

Descriptio

n

Fanuc

KAREL

ABB

RAPID
C/C++ C# Python Perl

Creating a

socket

MSG_CONN /

MSG_CONNECT
SocketCreate

socketdev
socket() TcpListener< socket.socket()

IO::Socket::IN

ET->new(...)

Connecting

to a server

MSG_DISCO SocketConnect

socketdev, ip,

port

connect() TcpClient
socket.connect

()
connect()

Sending

data

KAREL

commands
SocketSend

socketdev, data
send()

NetworkStrea

m.Write()
send()

print SOCKET

"data"

Receiving

data

WRITE SocketReceive

socketdev,

buffer

recv()
NetworkStrea

m.Read()
recv()

$data =

<SOCKET>

Closing a

socket

MSG_DISCO(tag

_name, status)
SocketClose

socketdev
close() Close() close()

close(SOCKE

T)

Supported

protocols

TCP/IP
TCP/IP, UDP TCP/IP, UDP TCP/IP, UDP TCP/IP, UDP TCP/IP, UDP

Multi-client

support

Limited server

Yes

Yes, through

multithreading

(pthread/std::t

hread)

Yes, through

Task/Threadin

g

Yes, through

threading or

asyncio

Yes, through

fork()

Error

handling

BEGIN ...

ERROR

TRAP

Handles errors

through TRAP

blocks

try-catch

Handles errors

through try-

catch blocks.

try-catch

Handles errors

using try-catch

blocks.

try-except

Handles errors

using try-

except blocks.

eval and $@

Handles errors

using eval and

$@.

Application

s in

industrial

automation

Processes errors

via ERROR

blocks Robot

controllers,

communication

with PLC

SCADA, IoT,

Web

integrations

Embedded

systems,

communicatio

n with robots

Industrial

applications,

SCADA

IoT, AI, data

processing,

robots

Web services,

automation

Function /

Description

FANUC KAREL ABB RAPID C/C++ C# Python Perl

Table 5.2 provides a comparison of client code for TCP/IP connection developed

with high-level programming languages C++, C#, Python, and Perl. Client code for

TCP/IP when operating industrial robots, developed using the Fanuc KAREL and

ABB RAPID languages, is given in Table 3.3.

Table 5.3 compares the use of different high-level programming languages used

for data encryption in the operation of industrial robots.

5.3. Applications of API in industrial automation

The use of API in industrial automation can be considered in the following

aspects:

• production automation - allows synchronization of the work of industrial

robots and other production equipment;

• collaborative robots (Cobots) - used to control robots that work together with

humans;

20

• smart factories - ensures the integration of industrial robots with IoT and

machine learning systems.

Table 5.2 Comparison of client codes for TCP/IP connection

High-level

language
TCP client – source code

Python

import socket

client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

client.connect(("192.168.1.100", 5000))

client.send(b"Hello, Server!")

response = client.recv(1024)

print("Received:", response.decode())

client.close()

PERL

use IO::Socket::INET;

my $client = IO::Socket::INET->new(

 PeerHost => "192.168.1.100",

 PeerPort => "5000",

 Proto => "tcp"

) or die "Could not connect\n";

print $client "Hello, Server!\n";

my $response = <$client>;

print "Received: $response\n";

close($client)

C++

#include <iostream>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <unistd.h>

int main() {

 int sock = socket(AF_INET, SOCK_STREAM, 0);

 struct sockaddr_in server;

 server.sin_family = AF_INET;

 server.sin_port = htons(5000);

 inet_pton(AF_INET, "192.168.1.100", &server.sin_addr);

 connect(sock, (struct sockaddr*)&server, sizeof(server));

 send(sock, "Hello, Server!", 14, 0);

 char buffer[1024] = {0};

 recv(sock, buffer, 1024, 0);

 close(sock);

 return 0;

}

C#

using System;

using System.Net.Sockets;

using System.Text;

class Program {

 static void Main() {

 TcpClient client = new TcpClient("192.168.1.100", 5000);

 NetworkStream stream = client.GetStream();

 byte[] data = Encoding.ASCII.GetBytes("Hello, Server!");

 stream.Write(data, 0, data.Length);

 byte[] buffer = new byte[1024];

 stream.Read(buffer, 0, buffer.Length);

 Console.WriteLine("Received: " + Encoding.ASCII.GetString(buffer));

 client.Close();

 }

}

21

5.4. Conclusions

The API in computer systems for programming industrial robots provides a

powerful tool for integration, automation, and control. It facilitates the development

of software solutions and ensures that industrial robots can be adapted to the

dynamically changing requirements of modern industry.

The possibilities and aspects that API provides when generating UP for

Industrial Robots and their operation are discussed.

The most commonly used high-level programming languages used in API when

operating Industrial Robots are discussed and their areas of application are analyzed.

Code for data encryption in the operation of industrial robots has been developed

and analyzed, using various high-level programming languages used in API in the

operation of industrial robots.

A comparison has been made of some of the main characteristics of using the

languages Fanuc KAREL, ABB RAPID, C++, C#, Python, and Perl in the operation

of industrial robots.

A client-server system has been created using Common LISP and Emacs LISP.

CHAPTER 6 APPLICATION OF THE DEVELOPED METHODOLOGY

FOR PROGRAMMING INDUSTRIAL ROBOTS

6.1. Programming Industrial Robots in the ROBOGUIDE Environment

The developed methodology was used for programming industrial robots in the

ROBOGUIDE environment.

Using Fanuc ROBOGUIDE, the created TCP_SERVER.kl server written in

KAREL was compiled (Fig. 6.9).

Fig. 6.9 Compiling TCP_SERVER.kl in Fanuc ROBOGUIDE

6.2. Programming Industrial Robots in the ABB RobotStudio Environment

The developed methodology was used for programming industrial robots in the

ABB Robot Studio environment.

The manipulated item is a box with the desired dimensions and weight (Fig.

6.23).

22

Fig. 6.23 Defining the manipulated object

The next step is to define the movements of the Industrial robot between the

defined points Fig. 6.27.

Fig. 6.27 Defining the movements of an industrial robot

The developed program can transfer string data from an external client written

in a high-level language to the ABB RAPID server. The software option installed on

ABB RobotStudio is "616-1 PC Interface" – required for socket communication.

Data transfer is shown in Fig. 6.30:

• data "string"/line 1 - VALUE in RAPID WATCH/ from an external client

/Delphi/ to the server written in ABB RAPID

• data type – string, numbers from 0 to 9 and letters – Cyrillic letters – “A...Я”

and- Latin letters – “A...Z”

23

Fig. 6.30. Data transmission

6.3. Conclusions

The methodology developed in Chapter 4 has been used for programming

industrial robots in the Fanuc ROBOGUIDE and ABB RobotStudio environments.

The analysis of the results obtained proves its functionality.

Using Fanuc ROBOGUIDE, a server written in KAREL was developed, which

can be used with a client program written in almost any high-level programming

language such as C, C++, C#, Java, Python, PERL, Delphi, etc., complying with the

Socket Programming syntax.

Using the high-level language Python, a client was created and tested to work

with the server created in the Fanuc ROBOGUIDE environment.

Using ABB RobotStudio, RAPID output code was generated for programming

industrial robots performing "Pick and Place" operations for conveyor service.

A server written in RAPID ABB was created, used for data transfer and

operation of industrial robots.

CHAPTER 7 PROGRAMMING THE INDUSTRIAL ROBOT IN THE

PRESENCE OF AN ADDITIONAL AXIS

7.1. Programming Industrial Robots with an Additional Axis

The use of an additional axis of motion, providing mobility to the Industrial

Robot in order to expand its working area, is a common practice in the design of

robotic cells. The control of this additional axis must be connected to the Industrial

Robot controller so that it can be controlled by the program running on the Industrial

Robot.

The presence of an additional axis of motion connected to the PR controller

requires additional steps in the development of a Control Program for Industrial

Robots using CARC systems.

24

7.2. Programming the PR in the presence of an additional axis in the middle of

ROBOGUIDE

ROBOGUIDE provides users with various tools for developing control

programs when an additional axis is available. To configure the additional axis in

the ROBOGUIDE environment, the virtual mobile console of Fanuc LR Mate

200iD/7L will be used, which has the full functionality of the real one.

Using the virtual mobile console, we start a dialogue to add an additional axis

Fig.7.3, by selecting

Maintenance - > Extended Axis Control - > F4(Manual) - >

Fig. 7.3 Selecting the maintenance menu

7.3. Programming industrial robots with an Additional Axis in the middle of

RobotStudio

To configure the additional axis in RobotStudio, the libraries with industrial

equipment supplied with the system will be used.

3D models of robotic cells for performing "Pick and Place" operations using an

additional axis are shown as follows:

• Fanuc LR Mate 200iD/7L industrial robots and an additional axis in the

middle of Fanuc ROBOGUIDE - Fig. 7.16;

• ABB IRB 2600 industrial robots and IRBT-2005 lower movable rail in

the middle of ABB RobotStudio - Fig. 7.17.

25

Fig. 7.16 Additional axis in the middle of FANUC ROBOGUIDE

Fig. 7.17 Additional axis in the middle of ABB RobotStudio

7.4. Programming the PR in the presence of an additional axis using KAREL

Depending on the robot configuration, additional axes can be activated and

configured in the controller via the corresponding system parameters.

KAREL, as a high-level programming language for FANUC robots, allows

control of position data and logic for all axes, as well as the initiation of movements

via TP programs.

26

By default, KAREL does not provide direct motion commands such as JMOVE

or LMOVE. Direct control of motions and trajectories from KAREL is only possible

when the Motion Option (J601) software option is activated.

Below is an example program from KAREL fig.7.18 for controlling the seventh

axis:

Fig. 7.18 KAREL program for controlling the seventh axis in the Fanuc Roboguide

programming environment

7.5. Designing a robotic cell for performing "Pick and Place" operations in the

ROBOGUIDE environment

With the increasing complexity of the operations performed by robotic systems

and the development of computer technologies, CARC systems are becoming a

standard tool in engineering practice. These systems are constantly evolving, and in

addition to developing programs for industrial robots, they provide their users with

the opportunity to integrate industrial robots into the structure of various robotic

cells.

To demonstrate these capabilities, we will examine the design of a robotic cell

for "Pick and Place" operations, consisting of palletizing boxes measuring

300x250x200 [mm] and weighing 5 [kg] in four rows on EUR 2 1200x1000 [mm].

Fig. 7.19 shows six possible configurations of the designed cell, taking into account

the dimensions of the working area of the industrial robot used. The cell includes the

following main components:

27

• Conveyor belt – delivers the boxes to the robotic palletizing cell;

• industrial robot - arranges the boxes on the pallets;

• pallets - define the area for arranging the boxes;

• additional axis - provides expansion of the working area of the Industrial

Robot.

Fig. 7.19 Configurations of the designed cell

The analysis of the developed configurations includes an assessment of the

capabilities of the selected industrial robot to perform the necessary operations at

the specific location of the cell components. If necessary, the industrial robot can be

replaced with another or an additional axis of mobility can be added in order to

expand its working area.

The outcome of this step, based on the configurations shown in Fig. 7.19 and

simulated using ROBOGUIDE, for the designed robotic cell, is presented in Fig.

7.22.

The analysis demonstrates that the maximum reach and workspace dimensions

of the robots selected in step (3) are sufficient to carry out all required operations.

28

Fig. 7.22 Analysis of the developed configurations in the ROBOGUIDE environment

Table 7.2 Characteristics of the developed configurations

Configuration
Box arrangement time [min] Total area

[m²] Cost
Pallet 1 Pallet 2 Total

1 7.58 10.91 18.49 7 1

2 7.58 7.58 15.16 8 1

3 7.58 7.48 15.06 6 0,92

4 10.78 10.78 21.56 9 0,93

5 4.86 6.20 11.06 11 0,77

6 4.86 4.86 9.72 11 0,77

29

The data in Table 7.2 show that, according to the established criteria:

• the configuration with the shortest box arrangement time on the two pallets

(highest productivity) is Configuration 6 – 9.72 [min];

• the configuration occupying the least area is Configuration 1 – 7 [m²];

• the configurations with the lowest cost are Configurations 5 and 6.

Based on these data, Configuration 6 is considered optimal and has been

selected for use in the subsequent stages of the design process.

7.6. Conclusions

The use of an additional axis of motion provides mobility for the industrial robot,

aiming to expand its workspace.

Additional steps have been defined in the development of control programs for

industrial robots using CARC systems when an additional axis of motion is present.

Using a virtual mobile console on the Fanuc LR Mate 200iD/7L within the

ROBOGUIDE environment, the configuration of the additional axis of motion was

carried out.

The configuration of the industrial robot’s additional axis of motion was also

performed in the RobotStudio environment, using the libraries with industrial

equipment provided by the system.

The main steps in designing robotic cells using CARC systems have been

defined.

These steps were applied in the design of a robotic cell for executing “Pick and

Place” operations within the ROBOGUIDE environment. As a result, six

configurations of the designed cell were developed.

Using ROBOGUIDE, characteristics used to evaluate the configurations were

determined. Based on the evaluation, an optimal variant of the designed cell was

selected according to the assignment criteria.

The obtained results show that modern CARC systems are a powerful tool not

only for programming industrial robots but also for designing robotic cells.

The defined steps are universal and can be applied when working with different

CARC systems.

30

SCIENTIFIC-APPLIED AND APPLIED CONTRIBUTIONS

SCIENTIFIC APPLIED CONTRIBUTIONS

SAPC.1 A universal methodology has been developed for generating control

programs for industrial robots using CARC systems, and the possibilities

of using APIs in its implementation have been analyzed.

SAPC.2 A classification of types of attacks on robotic production systems has been

developed according to three criteria, and recommendations for protection

against these attacks have been provided..

APPLIED CONTRIBUTIONS

AC.1 A comparative analysis of the most commonly used high-level

programming languages for APIs in industrial robot exploitation and their

areas of application has been made.

AC.2 Server and client code for TCP/IP connection using FANUC KAREL and

ABB RAPID robot programming languages has been developed and

compared.

AC.3 Code for data encryption during industrial robot operation has been

developed and analyzed, using various high-level programming languages

supported by APIs in robot operation.

AC.4 A server written in KAREL has been developed, which can be used together

with a client program written in different high-level programming

languages supported by APIs in robot operation.

AC.5 The main steps in designing robotic cells using CARC systems have been

defined; these steps are universal and can be applied when working with

different CARC systems.

31

LIST OF PUBLICATIONS RELATED TO THE DISSERTATION

1. Vladimirov B., Network Security in Remote Programming of Industrial Robots,

Automation of Discrete Production, No. 3, July 2021, pp. 171–175, ISSN 2682-

9584

2. Vladimirov B., St. Nikolov, Sl. Dimitrov, Application of Industrial Robots in

Environments Hazardous to Human Health, Automation of Discrete Production,

No. 4, July 2022, pp. 94–98, ISSN 2682-9584

3. Vladimirov B., Nikolov St., Tsolov S., Programming Industrial Robots in the

Fanuc ROBOGUIDE Environment, Engineering Proceedings, DOI:

10.3390/engproc2024070020, 2024 – Q4, Scopus

4. Vladimirov B., Nikolov St., Remote Transmission of Information During the

Operation of Fanuc Robots Using Fanuc ROBOGUIDE, Annals of DAAAM and

Proceedings of the International DAAAM Symposium, pp. 332–339,

https://doi.org/10.2507/35th.daaam.proceedings.045, 2024 – Scopus

5. Nikolov St., Vladimirov B., Designing Robotic Cells in the ROBOGUIDE

Environment, Proceedings of the 34th International Scientific and Technical

Conference Automation of Discrete Production Engineering 2025, Az-buki

National Publishing House, Bulgaria, https://doi.org/10.53656/adpe-2025.06

CITATIONS OF PUBLICATIONS RELATED TO THE DISSERTATION

Publication 3 is cited in:

1. Taj, S., Awasthi, S., Dahri, H., Hashsham, S., Khan, R., The Evolution of

Industrial Automation and Cybersecurity Risks, Advancing Cybersecurity in

Smart Factories through Autonomous Robotic Defenses Book Chapter, 2025,

ISBN 979-833730585-1, 979-833730583-7, Pages 397 – 429, DOI: 10.4018/979-

8-3373-0583-7.ch015

Publication 4 is cited in:

1. Sokolov, O., V., Andrusyshyn, A., Iakovets, V., Ivanov, Intelligent Human–Robot

Interaction Assistant for Collaborative Robots, Electronics (Switzerland) Article

Open Access, 2025 Multidisciplinary Digital Publishing Institute (MDPI), ISSN

20799292, Volume 14, Issue 6, Article number 1160,

DOI: 10.3390/electronics14061160

2. Di, Gai, Xu, Weiyan, Simulation Design of Industrial Robot Handling

Workstation Based on ROBOGUIDE, Lecture Notes in Electrical Engineering,

Conference Volume 1441 LNEE, Pages 242 – 249, Book Series ISSN 18761100,

Springer Science and Business Media Deutschland GmbH, 2025, ISBN 978-

981968002-3, DOI: 10.1007/978-981-96-8003-0_27

Research project supporting the PhD candidate, National Institute of Research,

Technical University – Sofia, 2024, Contract No. 241PD0024-06

Title: “Investigation of the Possibilities for Programming Industrial Robots Using

APIs”

Supervisor: Prof. Eng. Stiliyan Nikolov Nikolov PhD

PhD Candidate: Eng. Boryan Chavdarov Vladimirov MSc

https://www.scopus.com/pages/publications/105001100341?origin=resultslist

32

SUMMARY

PROGRAMMING OF INDUSTRIAL ROBOTS USING API

Eng. Boryan Chavdarov Vladimirov MSc

In the dissertation thesis, the possibilities provided by different computer

systems for using API in the operation of IR (Industrial Robots) are investigated.

In the first chapter, a brief historical overview of the history of IR, control

systems, and programming methods used in the operation of IR is made. The main

functions of the application programming interface API (Application Programming

Interface) are reviewed.

In the second chapter, high-level programming languages used in automated

programming of IR are reviewed. A comparative analysis of the capabilities of the

programming languages ST, ABB, RAPID and Fanuc KAREL is performed. The

use of programming languages Fanuc Karel and ABB RAPID in automated

programming of IR is analysed.

The third chapter examines the main communication protocols through which

remote operation of IR can be achieved. Server and client code for TCP/IP

connection are developed and compared using IR programming languages Fanuc

KAREL and ABB RAPID.

A classification of the types of attacks against robotic production systems is

developed, and recommendations for protection against these attacks are provided.

In the fourth chapter, a comparative analysis of the functional capabilities of

various modern CARC systems is performed, based on ten criteria. A universal

methodology, including eight stages, is developed for generating Control Programs

(CPs) for IR using CARC systems.

The fifth chapter discusses the use of API in the operation of IR. Some of the

main characteristics when using languages Fanuc KAREL, ABB RAPID, C++, C#,

Python and PERL in the exploitation of IR are compared. Code for data encryption

in the operation of IR, using various high-level programming languages used in the

API during IR operation, is developed and analysed.

In Chapter 6, the methodology developed in Chapter 4 is used for programming

IR in the environment of Fanuc ROBOGUIDE and ABB ROBOT STUDIO, and the

obtained results are analysed.

In Chapter 7, the specifics of programming IR with an additional axis are

discussed. The main steps in designing robotic cells using CARC systems are

defined. These steps are applied to the design of a robotic cell for performing “Pick

and Place” operations in the environment of Fanuc ROBOGUIDE.

