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I. ОБЩА ХАРАКТЕРИСТИКА НА ДИСЕРТАЦИОННИЯ ТРУД  

Актуалност на проблема 

Съвременното развитие на изкуствения интелект и машинното обучение поставя на преден 

план необходимостта от създаване на ефективни и адаптивни модели, които могат да се прилагат в 

различни области – от автономни системи и роботика до интелигентен анализ на данни и 

прогнозиране на сложни процеси. Един от основните проблеми в тази област е проектирането на 

архитектури на невронни мрежи (НМ), което представлява сложен и трудоемък процес, изискващ 

експертни знания и значителни изчислителни ресурси. Намирането на оптимални архитектури, 

които да осигуряват висока точност и обобщаваща способност, често се извършва чрез множество 

експерименти и итерации, което прави задачата изключително времеемка. В този контекст 

възниква необходимостта от автоматизация и оптимизация на процеса на проектиране на 

невронно-мрежови архитектури чрез използването на интелигентни метаевристични методи. 

Приложението на еволюционни стратегии и генетични алгоритми представлява обещаващ подход, 

който позволява търсене на оптимални решения в големи и сложни пространства от параметри и 

архитектурни конфигурации. Така се създават възможности за изграждане на ефективни модели 

без пряка намеса на човека в процеса на настройка и проектиране. Актуалността на изследването в 

дисертационния труд се обуславя от бързото развитие на дълбокото обучение и нуждата от 

автоматизирани системи за откриване на оптимални архитектури, особено при задачи с висока 

сложност и големи обеми данни. Използването на еволюционни алгоритми за автоматична 

оптимизация на НМ допринася за ускоряване на изследователските и инженерни процеси и 

позволява прилагането на дълбоки модели в нови домейни, където ръчната настройка е 

практически невъзможна. 

Цел на дисертационния труд, основни задачи и методи за изследване 

Целта на дисертационния труд е разработване на еволюционна стратегия за оптимизиране на 

архитектури на НМ с генетични алгоритми, която да бъде приложена и допълнително 

модифицирана и валидирана за решаване на конкретни приложни проблеми: управление на 

автономни агенти; разпознаване на човешки дейности; прогнозиране на замърсяване на въздуха.  

Основните задачи за постигане на целта са следните: (1) Литературен обзор на съвременни 

невронно-мрежови модели за машинно обучение и метаевристични алгоритми за решаване на 

оптимизационни задачи; (2) Анализ на съществуващи подходи за автоматизиране на 

проектирането на невронно-мрежови архитектури; (3) Анализ на домейн-специфични невронно-

мрежови модели за управление на автономни агенти, разпознаване на човешки дейности, 

прогнозиране на замърсяване на въздуха; (4) Дизайн на еволюционна стратегия за автоматична 

оптимизация на архитектури на НМ с определяне на генотипно представяне и кодиране на 

решения и модифицирани оператори за кръстосване и мутация; (5) Разработване на методология 

за приложение на еволюционната стратегия за автоматична оптимизация на архитектури на НМ за 

управление на автономни агенти; (6) Разработване на методология за приложение на 

еволюционната стратегия за автоматична оптимизация на архитектури на НМ за разпознаване на 

човешки дейности; (7) Разработване на методология за приложение на еволюционната стратегия 

за автоматична оптимизация на архитектури на НМ за прогнозиране на замърсяване на въздуха; 

(8) Провеждане на експерименти с масиви от данни за валидиране на еволюционната стратегия и 

оценка на ефективността на проектираните модели. 

Научните методи, които са използвани са следните: теоретико-аналитични методи за 

изследване на съществуващи решения и формиране на концептуална рамка за приложението на 

еволюционни стратегии при автоматизиране на проектирането на архитектури на НМ (анализ на 

научната литература и добри практики, класификация на съществуващи методи и подходи и 

домейн-специфични НМ модели, сравнителен анализ на съществуващи архитектури за 

обогатеното извличане на знание); методи на моделиране и формализиране на еволюционни 

стратегии и генетични алгоритми (концептуално моделиране, формално описание на генетични 

алгоритми и генетични оператори, математическо моделиране на еволюционни стратегии и 

генетични алгоритми за конкретни приложни задачи); емпирични и експериментални методи за 

проверка на хипотезите и оценка на ефективността на еволюираните модели (експерименти с 

реални масиви данни, оценка на модели с различни метрики, статистически методи за 

потвърждение на значимостта на резултатите и за проверка на основни и частни хипотези). 
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Научна новост 

Предложен е генетичен алгоритъм за оптимизация на архитектурата на НМ, който постепенно 

увеличава сложността решенията при нужда, използва модифициран оператор за кръстосване за 

решения с вариращи дължини и адаптивна мутация с три стратегии за промени в архитектурите на 

НМ. Предложен е генетичен алгоритъм за еволюционно базиран дизайн на конволюционни НМ за 

разпознаване на човешка дейност с използване на модифицирано кръстосване за решения с 

различна дължина и адаптивна мутация с три равновероятни стратегии за модифициране на слой, 

добавяне на слой и премахване на слой от архитектурата на НМ. Предложен е метод за 

автоматична оптимизация на архитектурата на конволюционни НМ за разпознаване на човешки 

дейности, при който еволюционния процес започва от прости архитектури, които постепенно 

могат да бъдат усложнявани чрез добавянето на нови слоеве. Предложен е хибриден дълбок 

пространствено-темпорален модел базиран на конволюционна НМ и LSTM мрежа за прогнозиране 

на замърсяването на въздуха с автоматичен подбор на входни променливи и оптимизация на 

хиперпараметрите на модела. Предложена е хибридна стратегия за запълване на липсващи 

стойности във времеви редове, която е приложена за обучение на хибридния дълбок 

пространствено-темпорален модел за прогнозиране на замърсяване на въздуха. Предложен е 

подход за включване на еволюирани архитектури за хибриден дълбок пространствено-темпорален 

модел за прогнозиране на замърсяването на въздуха в различни ансамбли, състоящи се от модели с 

еднакви архитектури и модели с различни архитектури. Предложена е стратегия за подбор на 

входни променливи при прогнозиране на замърсяването на въздух с хибриден дълбок 

пространствено-темпорален модел. Предложен е подход за включване на пространствена 

информация при прогнозиране на замърсяването на въздух с хибриден дълбок пространствено-

темпорален модел. 

Практическа приложимост 

Интегрирането на предложените решения е насочено към индустриални и научни 

приложения, които са силно ресурсоемки и трудни за формализиране и при които обемът на 

данните и сложността на задачите правят ръчната настройка на НМ модели практически 

невъзможна, като позволяват съществено да се намали зависимостта от човешка експертиза и да се 

съкрати времето за разработване на високоефективни НМ архитектури, с което автоматично да се 

създават модели, приложими в реални системи за управление, анализ и прогнозиране, в това число 

в интелигентни транспортни системи, индустриална автоматизация и системи за мониторинг на 

околната среда, за които необходимостта от модели с висока обобщаваща способност и 

адаптивност е особено значима, а автоматизираните подходи за проектиране на архитектури могат 

да имат пряко въздействие върху качеството и надеждността на решенията. 

Апробация 

Резултатите от дисертационния труд са разглеждани, обсъждани и публикувани в Списание 

„Computer and Communication Engineering”; Девета международна научна конференция „Computer 

Science‘2020”, Велинград, България, 18-21 октомври, 2020; Сборник научни трудове на 

Технически университет–София; 22ра Международна научна конференция „CompSysTech‘2021“, 

18–19 юни 2021, Русе, България; Международно научно списание Indian Journal of Computer 

Science and Engineering; Международна научна конференция „ICTTE‘2020“, 4–6 ноември 2020, 

Ямбол, България; Международно научно списание MDPI Sustainability; Научен семинар на 

докторанти във Факултет по Компютърни системи и технологии на 12 юни 2020 и 25 юни 2021. 

Публикации 

Основни постижения и резултати от дисертационния труд са публикувани в 8 научни статии, 

от които 1 самостоятелна. Научните статии са представени и публикувани в национални и 

международни конференции и международни реферирани и индексирани издания. 

Структура и обем на дисертационния труд 

Дисертационният труд е в обем от 217 страници, като включва увод, пет глави за решаване на 

формулираните основни задачи, списък на основните приноси, списък на публикациите по 

дисертацията и използвана литература. Цитирани са общо 206 литературни източници, всичките 

на латиница. Работата включва общо 39 фигури и 42 таблици. Номерата на фигурите, таблиците и 

използваната литература в автореферата съответстват на тези в дисертационния труд. 
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II. СЪДЪРЖАНИЕ НА ДИСЕРТАЦИОННИЯ ТРУД 

ГЛАВА 1. НЕВРОННО-МРЕЖОВИ МОДЕЛИ ЗА МАШИННО 

ОБУЧЕНИЕ 

Първа глава поставя теоретичната основа на изследването като разглежда същността на 

невронните мрежи, подходи за формулиране и решаване на оптимизационни задачи, както и 

принципите на еволюционното изчисление и еволюционните алгоритми. 

1.1. Невронни мрежи – същност, изкуствен неврон, архитектури 

Изкуствените невронни мрежи (НМ) се състоят от множество взаимосвързани изчислителни 

единици (неврони), които обработват информация паралелно. Всеки неврон приема входни 

сигнали, претегля ги чрез синаптични тегла, добавя прагова константа и прилага активационна 

функция (стъпкова, сигмоидна, ReLU, Softmax). НМ са организирани в слоеве – входен, скрити и 

изходен. Архитектурата играе важна роля в определянето на поведението на системата и зависи от 

спецификата на задачата, като се разграничават два основни типа: еднопосочни и рекурентни. 

Обучението на НМ се състои в минимизиране на функция на загуба чрез итеративна актуализация 

на параметрите на мрежата посредством обратно разпространение на грешката. 

Дълбоките НМ са особено подходящи за решаване на комплексни задачи, като два популярни 

подхода представляват конволюционните НМ (CNN) и Long Short-Term Memory (LSTM). CNN са 

способни на автоматично извличане на релевантни характеристики, чрез конволюция на входния 

сигнал с филтри. LSTM представлява рекурентна НМ, използваща паметов блок, позволяващ на 

системата да моделира дългосрочни зависимости във входните данни. 

1.2. Оптимизационна задача 

Оптимизационната задача цели намиране на най-доброто решение чрез минимизиране или 

максимизиране на целева функция при зададени ограничения. В зависимост от вида на 

променливите и функцията, задачите могат да бъдат линейни, нелинейни, непрекъснати, 

дискретни, конвексни или многокритериални. 

Традиционните методи за оптимизация са предимно числени и се делят на градиентни 

(използват производни) и безградиентни. Основните градиентни подходи са методът на най-

стръмното спускане, Нютоновият метод, квазинютоновите методи и стохастичното градиентно 

спускане (SGD), широко използвано при обучение на НМ. 

1.3. Метаевристични алгоритми за решаване на оптимизационни задачи 

Градиентните методи са ефективни при гладки, конвексни и диференцируеми функции, но 

често се затрудняват при сложни, нелинейни и мултимодални задачи. В такива случаи се 

използват алтернативни метаевристични методи, които търсят висококачествени решения без 

гаранция за глобален оптимум, но с добра практическа ефективност. Тези методи са генерални и 

третират задачата като „черна кутия“, като включват в себе си стохастични компоненти за 

избягване на засядане в локални оптимуми и подобряване на изследването на пространството, 

балансирайки между глобално изследване и локално прецизиране. 

Метаевристичните подходи се делят на: 

 методи по траектории (метод „изкачване на хълм“, Табу търсене, симулирано закаляване), 

които работят с едно решение и са склонни към засядане в локални оптимуми, но са бързи; 

 методи с популации, които работят с множество решения – еволюционни алгоритми и 

алгоритми с рояци (PSO, ACO). Те са по-подходящи за глобално търсене и оптимизация 

при многомерни пространства. 

1.4. Еволюционни изчислени 

Еволюционните алгоритми (ЕА) са вдъхновени от биологичната еволюция, като работят с 

популация от решения и чрез цикъл от оценяване, селекция и възпроизвеждане чрез вариация, 

итеративно подобряват качеството на решенията. Основни компоненти на тези алгоритми са:  

 представяне на решението – най-често се ползват вектори, пермутации, графи и дървета. 

 популация – създаване на начална популация и определяне на размера на популацията. 

 селекция на родители и оцелели – насочва процеса на търсене към по-обещаващи региони 

от пространството и осигурява сходимост. Селекцията на родители определя индивидите, 
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които ще участват в генерирането на потомство. Селекцията на оцелели се прилага след 

създаването на потомство и определя кои индивиди ще съставят следващото поколение. 

 оператори за вариация (мутация и кръстосване) – представляват механизми за въвеждане 

на разнообразие в популацията. Мутацията въвежда случайна промяна в един родител, 

докато кръстосването комбинира информация от двама или повече родители, 

подпомагайки разпространението на полезни градивни блокове в популацията. 

Популярни представители са: генетични алгоритми, еволюционни стратегии, генетично 

програмиране и еволюционно програмиране. 

1.5. Изводи към първа глава 

В резултат на направения литературен обзор на невронно-мрежовите модели за машинно 

обучение, както и на метаевристичните алгоритми за решаване на оптимизационни задачи могат 

да бъдат направени следните по-важни изводи: 

 НМ са вдъхновени от биологичната нервна система и са мощен инструмент за обработка на 

сложни данни и моделиране на зависимости; 

 Дълбоките архитектури значително разширяват възможностите на машинното обучение, но 

проектирането им е трудно, изисква експертиза и много ресурси; 

 Оптимизирането на архитектури на НМ е сложен оптимизационен проблем, за който 

класическите методи често са неефективни; 

 Метаевристичните алгоритми, особено еволюционните стратегии и генетичните алгоритми, са 

подходящи за такива задачи, защото извършват глобално търсене и не изискват аналитично 

описание на целевата функция; 

 Теоремата „No Free Lunch“ подчертава, че няма универсален оптимизационен метод – изборът 

на алгоритъм трябва да се съобрази с конкретната задача. 

Изводите подкрепят хипотезата, че оптимални архитектури на НМ могат да се намират чрез 

метаевристични алгоритми, което е основа за разгледаните в дисертационния труд приложения за 

управление на автономни агенти, разпознаване на дейности и прогнозиране на замърсяване на 

въздух.  

ГЛАВА 2. ОПТИМИЗИРАНЕ НА АРХИТЕКТУРИ НА НЕВРОННИ 

МРЕЖИ С ЕВОЛЮЦИОННИ АЛГОРИТМИ 

Втора глава представя предложен подобрен генетичен алгоритъм за автоматично проектиране 

на архитектури на невронни мрежи, използващ модифициран оператор за кръстосване за решения 

с варираща дължина и адаптивна мутация. Предложеният метод е сравнен с други съвременни 

методи за оптимизиране на архитектури на невронни мрежи. 

2.1. Същност на оптимизирането на архитектури на невронни мрежи 

Архитектурата на НМ оказва силно влияние върху представянето на модела, като различни 

задачи поставят различни изисквания върху дълбочината и организирането мрежата. Изборът на 

подходяща архитектура обикновено се състои в настройването на голям брой хиперпараметри 

като брой слоеве, техния тип и параметри, коефициенти за регуляризация, скорост на обучение и 

други, което често прави ръчната оптимизация трудна, бавна и неефективна. 

Голяма част от съвременните методи за оптимизиране на невронни архитектури имат за цел да 

улеснят изследователите, като намалят зависимостта от специализирани знания, чрез 

автоматизиране на оптимизационния процес. За подобряване на ефективността при изследване на 

големи пространства от архитектури, тези подходи често използват еволюционни алгоритми, 

байесовата оптимизация и обучение с утвърждение. 

2.2. Методи за автоматично оптимизиране на архитектури на невронни мрежи 

С оглед на значителното време, необходимо за оценка на моделите, автоматизираните методи 

за оптимизация на архитектури често използват различни техники за ускоряване на процеса като 

съкратено обучение за малък брой епохи, частично обучение върху подмножество от данните, 

споделяне на тежести, обучение на по-малки модели, както и прогностични модели за 

преждевременно прекратяване на обучението на некачествени архитектури. 

Класически методи за оптимизация на хиперпараметри като grid search и случайно търсене 

имат своите недостатъци. Grid search страда от експоненциално нарастване на комбинациите, 
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докато случайното търсене не се възползва от натрупания опит по време на оптимизационния 

процес за адаптивно ориентиране на търсенето. За преодоляване на тези ограничения могат да се 

използват различни адаптивни методи, като обучение с утвърждение и метаевристики. 

Редица проведени изследвания върху задачи с изображения показват, че обучението с 

утвърждение е способно автоматично да генерира конкурентни архитектури. 

Различни метаевристични алгоритми също са приложени за оптимизиране на архитектурите 

на CNN, сред които с популярността и доброто си представяне се открояват PSO и еволюционните 

алгоритми. 

2.3. Оптимизация на архитектури на невронни мрежи с генетичен алгоритъм с 

модифициран оператор за кръстосване и адаптивна мутация 

В дисертацията е предложен генетичен алгоритъм за автоматизиране на оптимизацията и 

дизайна на архитектури на НМ, който използва модифициран оператор за кръстосване за решения 

с варираща дължина и адаптивна мутация. Предложеният метод дава възможност за поетапно 

нарастване на сложността на решенията в хода на еволюционния процес. 

Решенията са с варираща дължина и представляват поредица от компоненти (слоеве или 

популации от неврони), характеризиращи се с набор от параметри, позволявайки оптимизирането 

както на дълбочината на архитектурата, така и на отделните характеристики на всеки компонент. 

Началната популация се формира от малки случайно генерирани функционални архитектури. 

Кръстосването се извършва на ниво компоненти, т.е. кръстосват се компоненти между двата 

родителя. Тъй като решенията са с различна дължина, се използва модифициран едноточков 

оператор за кръстосване, при който първо се избира точка на кръстосване в по-дългото решение, а 

за по-късото решение точката се изчислява така, че относителната позиция да съответства на тази 

в по-дългото. 

Вероятността за извършване на кръстосване се определя по формулата: 

 
  1max

1
1

21






2l,l

ll
=p  (2.1) 

където l1 и l2 са дължините (броя компоненти) на двете решения. 

По този начин вероятността за кръстосване зависи от това колко подобни по дълбочина са 

двете решения, за които се прилага кръстосването. 

След кръстосването за новополучените дъщерни решения се прилага адаптивна мутация с 

определена вероятност, която е голяма в началото на еволюционния процес и постепенно 

намалява в неговия ход до определена минимална стойност.  

Предложени са три типа мутации: 

 Модифициране на компонент: стойността на един от параметрите на случайно избран 

компонент се променя с друга валидна стойност; 

 Добавяне на компонент: добавя се нов случайно генериран компонент на определено място 

в решението; 

 Премахване на компонент: избира се един от съществуващите компоненти и се премахва. 

2.4. Сравнителен анализ на предложения метод за оптимизиране на архитектури на 

невронни мрежи 

В таблица 2.1 и на фиг. 2.2 е представено сравнение между предложения метод за 

оптимизиране на архитектури на невронни мрежи и стандартни Neural Architecture Search (NAS) 

техники, стандартни генетични алгоритми със статично кръстосване и ръчна (експертна) 

оптимизация по няколко ключови критерия. Като направения анализ показва следните ключови 

предимства на предложения метод за оптимизация на архитектури на НМ: 

 много висока гъвкавост на архитектурата благодарение на добавяне/премахване на 

компоненти; 

 минимален proxy gap, защото не се използват релаксации; 

 адаптивност чрез прогресивна комплексност и динамична мутация; 

 по-ниска изчислителна цена от някои NAS методи, макар не толкова ниска като при 

ръчната оптимизация; 

 висока автоматизация в сравнение с ръчния подход. 
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Таблица 2.1. Сравнителен анализ на предложения метод за оптимизиране на архитектури на 

невронни мрежи 

Критерий Предложен ГА 
Диференцируем 

NAS 
Стандартен ГА 

Ръчна 

оптимизация 

Поддържане на 

променлива 

дълбочина 

да (динамична 

чрез add/remove) 

ограничена 

(фиксиран 

суперграф) 

ограничена 

(фиксиран 

размер на 

хромозома) 

не 

Стратегия за 

комплексност 

прогресивна (от 

прости към 

сложни) 

обикновено 

фиксирана 
не изцяло ръчна 

Необходимост 

от релаксация 
не 

да (softmax 

релаксации) 
не не 

Риск от proxy 

gap 
нисък висок нисък няма 

Адаптивна 

мутация 
да не обикновено не не 

Оператори 

Add/Remove 
да не не не 

Мултицелеви 

оптимизации 
да (лесно 

интегрируеми) 
възможно (но 

сложно) 
възможно (с 

модификации) 
изключително 

трудно 
Интерпретируе

мост 
висока средна висока висока 

Изчислителна 

цена 

средна 

(еволюционен 

подход) 

висока 

(непрекъснато 

обучение) 
средна много висока 

 

 

Фигура 2.2. Радар диаграма за сравнение на предложения метод за оптимизиране на архитектури 

на невронни мрежи с генетичен алгоритъм с модифициран оператор за кръстосване и адаптивна 

мутация с други методи 

2.5. Изводи към втора глава  

По-важните изводи и резултати във втора глава могат да бъдат обобщени както следва: 

 Използването на подходяща архитектура на НМ за решаване на съответна задача е от 

критична важност за успешното създаване на полезен, надежден и ефективен невронно-мрежов 

модел, но изборът и дизайнът на НМ архитектура не е лесна задача. Въпреки, че съществуват 

множество решения за автоматизиране на проектиране на архитектури на НМ, които преодоляват 
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проблемите на ръчната оптимизация, всеки от съществуващите подходи има различни проблеми, 

недостатъци и ограничения. 

 Предложен е генетичен алгоритъм за оптимизация на архитектурата на НМ, който постепенно 

увеличава сложността на решенията при нужда, използва модифициран оператор за кръстосване за 

решения с вариращи дължини и адаптивна мутация с три стратегии за промени в архитектурите на 

НМ. 

Основните предимства на предложения метод за оптимизация на архитектурата на НМ с 

използване на генетичен алгоритъм могат да бъдат обобщени както следва:  

1. Гъвкава поддръжка на променлива дълбочина: методът позволява динамична промяна на 

архитектурната дълбочина чрез оператори за добавяне и премахване на компоненти, комбинирани 

с модифицирано кръстосване като по този начин се осигурява едновременна оптимизация на броя 

слоеве и техните параметри. 

2. Постепенно увеличаване на сложността: алгоритъмът реализира стратегия за прогресивно 

усложняване на архитектурите, при която оптимизацията започва с прости модели и увеличава 

тяхната комплексност само при наличие на необходимост. 

3. Ниска чувствителност към релаксации и приближения: за разлика от диференцируемите NAS 

методи, при които дискретните архитектурни избори се заменят с континуирани вероятности чрез 

релаксация (например с softmax), предложеният подход оперира в дискретно пространство като 

елиминира риска от несъответствия между оптимизираната архитектура и финалния дискретен 

модел („proxy gap“). 

4. Адаптивна стратегия за мутация: вероятността за мутация се регулира динамично по време на 

еволюцията – висока в началните поколения за насърчаване на разнообразие и постепенно 

намаляваща към края на оптимизацията за прецизно донагласяне на параметрите. Това осигурява 

балансирано съотношение между изследване (exploration) и експлоатация (exploitation). 

5. Контролирано структурно модифициране: включването на три вида мутации (модифициране на 

параметри, добавяне и премахване на компоненти) позволява ефективно изследване на 

архитектурното пространство като едновременно се поддържа структурна валидност на решенията 

и се избягва генерирането на некоректни архитектури. 

6. Подходящ за мултицелеви оптимизации: алгоритъмът лесно се разширява за оптимизация по 

множество критерии (например точност, брой параметри, латентност, енергийна ефективност) без 

необходимост от промяна на основния механизъм на еволюционното търсене. 

7. Интерпретируемост и проследимост на еволюционния процес: използваните оператори са 

интуитивни и лесно интерпретируеми, което позволява анализ на еволюционната траектория и 

идентифициране на структурни мотиви, довели до оптимални решения. 

ГЛАВА 3.  ЕВОЛЮИРАНЕ НА НЕРВНА СИСТЕМА ЗА УПРАВЛЕНИЕ НА 

АВТОНОМНИ АГЕНТИ 

Трета глава представя предложен в дисертационния труд метод за еволюиране на изкуствена 

нервна система за управление на автономни агенти, използваща индиректно кодиране и генетичен 

алгоритъм. 

3.1. Същност на еволюционната роботика 

Еволюционната роботика използва еволюционни алгоритми за автоматично проектиране на 

системи за управление на автономни агенти. В сравнение с традиционните подходи за дизайн на 

контролери, които обикновено изискват значителни предварителни познания за средата и 

взаимодействията с нея, еволюционните методи освен, че облекчават работата на изследователите 

и инженерите, но и предоставят възможност за откриване на нови и неочаквани поведения. 

Основното предизвикателство пред еволюционната роботика, възпрепятстващо по-широкото 

ѝ практическо приложение, е еволюирането на сложни поведения. В литературата са предложени 

множество решения на този проблем като модулност, постепенна еволюция, използване на по-

сложни невронни модели, неограничена (отворена) еволюция и индиректно кодиране. 

3.2. Невронни модели за еволюиране на автономни агенти 

Разгледани са три основни невронни модела, използвани при еволюирането на контролни 

системи за автономни агенти: 

 Неврон на McCulloch и Pitts – прагов модел с бинарен (или сигмоиден) изход. Използва се 

широко в областта на еволюционната роботика, заради своята простота. 
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 Непрекъснатовремеви рекурентни невронни мрежи (CTRNN) – биологично по-

реалистичен модел, позволяващ моделиране на по-сложно поведение на невроните, чрез 

включване на времева динамика. 

 Спайкови невронни мрежи – биологично реалистичен модел, моделиращ активността на 

невроните чрез спайкове (потенциали за действие) и позволяващ възникването на сложна 

динамика. 

Невронни модели за еволюиране на автономни агенти според метода на кодиране 
Различават се два основни подхода за кодиране на генетичната информация и трансформация 

от генотип към фенотип: 

 Директно кодиране – генотипът съдържа пълното описание на НМ, като преобразуването 

между генотип и фенотип е еднозначно. Подходът е по-популярен заради концептуалната 

си простота, но страда от слаба мащабируемост. Популярен представител е NEAT. 

 Индиректно кодиране – генотипът съдържа само ключови характеристики на НМ, чрез 

които се разгръща цялата мрежа. Подходът предоставя по-компактно представяне на 

решенията, но често води до формиране на мрежи с регулярна структура. По-известни 

представители са: HyperNEAT, клетъчно кодиране, модели с генетични регулаторни мрежи 

и Analog Genetic Encoding. 

Невронни модели за еволюиране на автономни агенти според задаване на фитнес функция 
Изборът на подходяща фитнес функция е критичен, тъй като чрез нея експериментаторът 

може неволно да наложи ограничения, които да възпрепятстват еволюционния процес и да 

предотвратят постигането на желаното поведение. Според начина на задаване на фитнес 

функцията НМ за управление на автономни агенти могат да бъдат разделени в две основни 

категории: 

 модели с изрично зададена фитнес функция - оценката се получава чрез предварително 

зададени критерии. Основни видове фитнес функции са: базирани на обучаващи данни, 

обобщени, поведенчески, приспособени, инкрементални и конкурентни; 

 модели без изрично зададена фитнес функция - често се използват при отворената 

еволюция. Основават се на новост, енергийни механизми и други стратегии. 

3.3. Моделиране на изкуствена нервна система за автономни агенти с индиректно 

кодиране и генетичен алгоритъм 

Базирайки се на наблюдения върху биологичното развитие на нервните системи в 

дисертационния труд е предложен модел за развитие на изкуствена нервна система за управление 

на автономни агенти. Развитието на системата е структурирано в три последователни фази: 

 Фаза 1: миграция на неврони; 

 Фаза 2: формиране на връзки; 

 Фаза 3: адаптация на връзките в зависимост от активността на мрежата по време на 

жизнения цикъл на агента. 

В предложения модел за развитие НМ за управление на автономни агенти са разположени в 

двумерна равнина и се кодират индиректно като поредица от невронни подпопулации. 

Подпопулациите се позиционират една след друга по хоризонталната ос: най-напред се разполагат 

невроните от първата подпопулация, вдясно от тях – невроните от следващата, и т.н. 

Геном 
Геномът е с променлива дължина (минимална дължина - 2) и представлява поредица от 

невронни подпопулации – първата е входна, а последната е изходна. 

Всяка междинна подпопулация се характеризира чрез следните параметри: 

 Брой неврони. 

 Лично пространство на невроните (personalspace) – определя минималната допустима 

дистанция между два неврона от подпопулацията, така че те да не се припокриват. 

 Координати на върхове на четириъгълник – определят площта на четириъгълник, в 

рамките на която могат да бъдат разполагани невроните от подпопулацията. 

 Максимална дължина на аксона – определя най-голямото разстояние, при което невроните 

от подпопулацията могат да образуват връзки с други неврони. 

 Праг на активация и скорост на обучение – използват се за промяна на теглата в 

зависимост от активността на НМ. 
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Параметрите са нормализирани в интервала [0, 1], а при сглобяване се мащабират спрямо броя 

неврони. 

Поставяне и преместване на неврони в подпопулация 
Невроните се разполагат така, че личните им пространства да не се припокриват. Входните и 

изходните неврони се подреждат вертикално, останалите – в четириъгълна форма, като първо се 

позиционират неврони във върховете, а всеки следващ – в центъра на подпопулацията. При 

припокриване се прилага отблъскваща сила F (фиг. 3.2), насочена по правата, свързваща двата 

неврона (фиг. 3.1) и с големина определена от разстоянието d между тях, докато припокриването 

се отстрани или се достигне лимит от стъпки: 

d|=F|  acepersonalsp2  (3.3) 

Невроните във върховете са фиксирани, а излезлите извън границите се връщат чрез 

огледално отражение. 

 

 

Фигура 3.1. Неврон n2 действа на 

неврон n1 с избутваща сила, тъй като 

n1 е навлязъл в личното му 

пространство. 

Фигура 3.2. Неврон n1 е навлязъл в личните 

пространства на неврони n2 и n3, които започват да 

му действат с избутващи сили F21 и F31 съответно. 

Крайното преместване се определя от сбора на тези 

сили – Fnet. 
Свързване на невроните 

След позиционирането се определя конективността на мрежата: всеки неврон се свързва с 

всички неврони вдясно от него, намиращи се в обсега на максималната дължина на аксона му, като 

началните тегла се задават като 1/d според разстоянието d. След това се премахват излишни 

компоненти, които не допринасят към изходния сигнал или не приемат входна информация. 

Използване на активността на НМ за обучение на параметри 
Теглата на връзките се адаптират по време на живота на агента според активността на НМ 

чрез пресинаптичното правило, актуализиращо връзки само при активен пресинаптичен неврон — 

увеличават се, ако постсинаптичният е активен, и намаляват в противен случай:  

1,0  η<ηΔw+w=w ij

1t

ij

t

ij  (3.4) 

където ijΔw  е +1 или –1 в зависимост от това дали постсинаптичния неврон е активен или не, а η е 

скоростта на обучение. Теглата имат стойности между –1 и 1. 

3.4. Експериментално тестване на модел за развитие на изкуствена нервна система за 

управление на автономни агенти  

Предложеният модел е тестван експериментално чрез симулация на автономен агент в 

изкуствен свят. 

Симулиран свят 
Изкуственият свят представлява двумерна квадратна арена, дискретизирана на клетки 

(квадрати), изцяло оградена от стени. В рамките на арената се разполагат обекти от два типа: 

храна и отрова. На фиг. 3.13 е показан примерен симулиран свят. Агентът е визуализиран като 

окръжност, ориентацията му е обозначена със стрелка, храните са представени чрез триъгълници, 

а отровите – чрез ромбове. Запълнените клетки маркират стените. 
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Фигура 3.13. Примерен свят с размер 20 × 20 с 5 храни и 5 отрови.  

Агентът притежава ориентация, енергия и сензорна информация за обекта пред себе си, както 

и за собственото си енергийно състояние. Способен е да се движи напред или да се завърта в двете 

посоки. Взаимодействията с различните обекти могат да променят енергията на агента – храната я 

увеличава, отровата и стените я намаляват. Освен това всяко действие и времева единица също 

консумират енергия. Целта е агентът е да се научи да различава полезни от вредни обекти, като 

избягва стените и отровата и консумира храната. 

Генетичен алгоритъм 
Използван е генетичен алгоритъм за оптимизиране на броя и параметрите на подпопулациите 

в НМ. Експериментите са проведени с популация от 100 индивида и 200 поколения, с турнирна 

селекция (t = 2) и елитизъм. Входният слой съдържа 5 неврона (различните типове обекти, 

включително празна клетка, и енергията), а изходният – 3 неврона (трите възможни действия). 

Към входа и изхода е добавен шум (μ = 0 и σ = 0.05). Невроните използват сигмоидна активация и 

не се допускат рекурентни връзки. Експериментът е повторен три пъти. 

Началната популация съдържа случайно генерирани НМ с входна и изходна подпопулация и 

0–10 междинни подпопулации (1–10 неврона всяка). 

Кръстосване и мутация 

Вероятността за кръстосване (минимум 0.05) се определя чрез уравнение (2.1), като l1 и l2 

представляват броя на подпопулациите в двата родителя. 

Мутацията започва с вероятност 0.9 и намалява до 0.2, със стъпка от 0.01 на поколение.  

Използват се три типа мутации: 

 Модифициране на подпопулация: Един от параметрите на произволно избрана 

подпопулация се променя. За върховете на четириъгълника се генерира нова координата. 

Броят неврони се увеличава или намалява с 1. Всички останали параметри се мутират чрез 

добавяне на шум с нормално разпределение (μ = 0, σ = 0.01). 

 Добавяне на междинна подпопулация: Вмъква се нова случайно генерирана междинна 

подпопулация на произволна позиция в решението. 

 Премахване на междинна подпопулация: Случайно избрана междинна подпопулация се 

премахва. 

Вероятността за модифициране е 50%, а добавянето и премахването са равновероятни. 

Фитнес функция 

Агентът стартира от произволна позиция и с произволна ориентация в среда 20 × 20 със 100 

храни и 100 отрови на случайни позиции. Началната енергия е 1000 единици, а енергийната 

граница за „здравословно“ състояние е 500. Агентът изпълнява действия до изчерпване на 

наличната си енергия или до достигане на предварително определен максимален брой времеви 

стъпки (1500). Енергията намалява за всяка времева стъпка (–1), при извършване на действие (–

10), при сблъсък със стена (–200) и при консумирането на отрова (–400). При консумирането на 

храна енергията се увеличава с 400 единици. 

Фитнес функция е проста и измерва колко дълго агентът поддържа енергията си над зададения 

праг. Всеки индивид се оценява чрез 10 независими изпълнения върху случайно инициализирани 

светове, като тези 10 среди са еднакви за всички индивиди: 
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fitness  (3.5) 

където n е броят изпълнения, a α = 0.1. Целта е да се селектират не само индивиди с високо средно 

представяне, но и такива с устойчиво поведение между отделните изпълнения. 

На индивиди с некоректно дефинирани подпопулации им се присвоя фитнес 0. 

Експериментални резултати 
На фиг. 3.14, 3.15 и 3.16 са показани сглобените НМ на най-добрите индивиди след 

премахването на излишните части. Входните неврони са оцветени в синьо, а изходните — в 

оранжево. Подредбата на входните неврони отдолу нагоре съответства на следната информация: 

празна клетка, стена, храна, отрова и вътрешна енергия. Аналогично, изходните неврони отдолу 

нагоре отговарят за действията: завъртане по часовниковата стрелка, завъртане обратно на 

часовниковата стрелка и движение напред. 

  
Фигура 3.14. НМ получена от най-добрия 

индивид от последното поколение на 

първото изпълнение на експеримента. 

Фигура 3.15. НМ получена от най-добрия 

индивид от последното поколение на второто 

изпълнение на експеримента. 

 
Фигура 3.16. НМ получена от най-добрия индивид от последното поколение на третото 

изпълнение на експеримента. 

При две от изпълненията (фиг. 3.14 и фиг. 3.15) алгоритъмът еволюира сходни прости 

архитектури, които използват само входовете за храна, стена и празна клетка. В третото 

изпълнение (фиг. 3.16) най-добре представящата се НМ използва единствено информацията за 

наличие на отрова, като игнорира останалите входове. Нито една от еволюираните мрежи не 

използва входа, свързан с вътрешната енергия на агента. 

Агентите, управлявани от най-добрите мрежи от първите две изпълнения, демонстрират 

подобни поведенчески стратегии: събират храна и избягват стени, но не реагират на отрова. 

Агентът от третото изпълнение успява да избягва отровата, но не показва реакция към други 

видове обекти. 
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Фитнесът както на най-добрите индивиди, така и на цялата популацията се увеличава в хода 

на еволюционния процес, като агентите бързо усвояват стратегии за избягване на опасности и 

събиране на храна, поддържайки енергията си над зададената граница до края на оценяването. 

3.5. Изводи към трета глава 

По-важните изводи и резултати, получени в трета глава на дисертационния труд могат да 

бъдат обобщени както следва: 

 Областта на еволюиране на НМ за управление на автономни агенти претърпява значително 

развитие от началото си през 80-те и 90-те години, но въпреки това развитие някои проблеми 

остават нерешени, като например получаването на сложни поведения: повечето еволюирани 

поведения са сравнително прости като избягване на препятствия, следване на източник на сигнал 

(например светлина или звук) и други. 

 Редица стратегии са предложени за преодоляването на тези ограничения и проблеми като 

постепенна еволюция, генеративни кодирания, използване на по-правдоподобен невронен модел 

позволяващ по-богата динамика, както и използване на неограничена еволюция без изрично 

зададена фитнес функция. 

 За да може еволюционната роботика да се развива допълнително трябва да покаже, че е 

способна да произвежда сложни поведения, които могат да намерят приложение в реални 

ситуации.  

 В дисертационния труд е предложена биологично вдъхновена индиректна схема на кодиране 

за еволюиране на НМ за управление на автономни агенти, при която НМ се развиват и 

впоследствие по време на живота на агента се дооформят от неговите взаимодействия със средата.  

 Вземането предвид на взаимодействията на агента с околната среда в хода на неговото 

развитие може да улесни еволюционния процес чрез получаване на агенти, способни да се 

адаптират към специфичната среда. Гъвкавостта на генома от своя страна може да улесни 

еволюцията на по-сложни системи.  

 Експерименталното тестване на предложения метод върху симулация на изкуствен свят 

показва, че с използване на проста имплицитна фитнес функция успешно се еволюират агенти 

способни да разграничават различни обекти.  

 Разработената индиректна схема за кодиране на НМ за управление на автономни агенти има 

възможност да генерира разнообразни и комплексни архитектури със сравнително малък на брой 

параметри спрямо други възможни подходи за еволюиране на нервна система за управление на 

автономни агенти. 

ГЛАВА 4. ЕВОЛЮЦИОННО БАЗИРАН ДИЗАЙН НА 

КОНВОЛЮЦИОННА НЕВРОННА МРЕЖА ЗА РАЗПОЗНАВАНЕ НА 

ЧОВЕШКА ДЕЙНОСТ 

Четвърта глава представя предложен в дисертационното изследване еволюционно базиран 

метод за дизайн на конволюционна невронна мрежа за разпознаване на човешка дейност. 

4.1. Същност на задачата за автоматизирано разпознаване на човешка дейност 

Системите за автоматизирано разпознаване на човешки дейности обикновено се състоят от 

набор от сензори, информацията от които се обработва от  алгоритми за машинно обучение, които 

класифицират отделни дейности, като например ходене, хранене, тичане и други.  

Такива системи могат да използват различни типове сензори за събиране на данни: видео 

камери, носими сензори, сензори вградени в средата. Всеки със своите предимства и недостатъци 

от гледна точка на точност, ниво на инвазивност и количество контекстуална информация. 

Разпознаването на човешки дейности намира редица приложения в различни области: умни 

домове, здравеопазване и подпомагане на възрастни хора и други.  

Традиционните подходи за автоматизирано разпознаване на човешки дейности обикновено 

включват ръчно извличане на характеристики от суровия сигнал. 

Популярните традиционни алгоритми са: методът на опорните вектори, скритите марковски 

модели, методът на K-най-близките съседи, дърветата на решенията, наивните байесови 

класификатори и методът на условните случайни полета. През последните години методите за 

дълбоко обучение придобиват особена популярност в разпознаването на човешки дейности поради 

способността им да улавят значително по-сложни зависимости и закономерности в данните. 
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4.2. Конволюционни невронни мрежи за разпознаване на човешка дейност 

Конволюционните НМ се използват често за решаване на задачи, свързани с разпознаване на 

дейности, поради способността си автоматично да извличат релевантни характеристики директно 

от суровите входни данни. Основен техен недостатък е необходимостта от значителен обем 

анотирани данни за обучение. CNN често се представят по-успешно спрямо редица класически 

модели. 

Представянето на конволюционните НМ зависи силно от архитектурата на модела, като 

определянето ѝ е сложна задача, тъй като включва избор на множество хиперпараметри: брой и 

типове слоеве (конволюционни, пулуващи, напълно свързани), тяхната свързаност, както и 

параметрите на всеки от тях (брой филтри, размер и стъпка на филтрите, размер и тип на pooling 

операциите, брой неврони и др.). Поради големия брой възможни конфигурации, в практиката 

често се разчита на ръчна оптимизация, изискваща значителни специализирани знания от страна 

на експериментатора. Следователно разработването на ефективни автоматизирани методи за 

оптимизиране на архитектурата на конволюционни НМ е от ключово значение за научни 

изследвания и практически приложения в областта на разпознаването на човешка дейност. 

4.3. Еволюционно базиран дизайн на конволюционни невронни мрежи за 

разпознаване на човешка дейност 

За оптимизация на архитектурата на конволюционна НМ за разпознаване на човешка дейност 

в дисертационния труд се предлага използване на генетичен алгоритъм със стандартната 

алгоритмична последователност. 

Представяне на решение 
Решенията представляват архитектури на конволюционни НМ с променлива дължина и се 

състоят от две основни части – конволюционна и напълно свързана. Всяка от тези части може да 

съдържа k на брой слоеве, като всеки слой се характеризира със съответните му параметри. 

Формално решението може да бъде представено във вида  :DC,  

 ,c,,c,c,c=C n32 ...1    m32 d,,d,d,d=D ...1 , 

 k321i hc,,hc,hc,hc=c ... ,  l321i hd,,hd,hd,hd=d ... , 
(4.1) 

където C обозначава конволюционната част, D – напълно свързаната част, n е броят 

конволюционни слоеве, m – броят напълно-свързани слоеве, hc са параметрите на 

конволюционните слоеве, а hd – параметрите на напълно свързаните слоеве. 

Начална популация 
Началната популация се формира от случайно генерирани архитектури с минимална 

допустима големина – един конволюционен и един напълно свързан слой. По този начин 

еволюционният алгоритъм започва с популация от относително прости мрежи, които постепенно 

нарастват по сложност в хода на еволюционния процес. 

Фитнес функция 
За ускоряване на оптимизацията, обучението на архитектурите по време на еволюцията се 

извършва за малък брой епохи (5). В рамките на еволюционния процес моделите се обучават 

върху обучаващо множество, а качеството им се оценява върху отделно валидационно множество. 

За фитнес стойност се използва класификационната точност. 

Кръстосване 
За оператор на кръстосване се използва модифицирано едноточково кръстосване, адаптирано 

за решения с променлива дължина. Операцията по кръстосване се прилага върху 

конволюционната или напълно свързаната част, с вероятност определена по уравнение (2.1) и 

минимална вероятност от 0.05, като l1 и l2 обозначават брой слоеве в избраната част в двете 

решения. 

Мутация 
След кръстосване новосъздадените решения могат да бъде мутирани с динамична вероятност, 

започваща от 0.8 и намаляваща с 0.05 за всяко поколение до достигане на минималната стойност 

от 0.2. 

Прилага се една от три възможни равновероятни мутации: 
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 Модифициране на слой: променя се стойността на един от хиперпараметрите на случайно 

избран слой, чрез замяна с друга валидна стойност; 

 Добавяне на слой: в решението се вмъква нов, случайно генериран слой на произволна 

позиция; 

 Премахване на слой: изтрива се случайно избран съществуващ слой. 

Избор на най-добра архитектура и пълно обучение 
След оптимизацията се избира най-добрата архитектура от последното поколение, която се 

обучава 10 независими пъти за 100 епохи върху обединението от обучаващото и валидационното 

множество данни и се оценява върху тестовото множество. 

4.4. Експериментални резултати за оценка на еволюционно базиран дизайн на 

конволюционни невронни мрежи за разпознаване на човешка дейност 

В изследването се използват сравнително малък размер на популацията (20) и ограничен брой 

поколения (50). 

За избора на родители при оператора за кръстосване се прилага турнирен подбор с турнирен 

размер 2. В еволюционната процедура не е включен механизъм за елитизъм. Максималният брой 

конволюционни слоеве е ограничен до 10, а максималният брой напълно свързани слоеве – до 5. 

Таблица 4.1 представя допустимите стойности за всеки хиперпараметър, характеризиращ 

определен слой. 

Таблица 4.1.  Възможни стойности за всеки от оптимизираните хиперпараметри 

Конволюционна част 

Брой филтри [16, 32, 64, 128, 256] 

Размер на филтъра [2, 3, 4, 5, 6, 7, 8, 9] 

Включване на pooling слой [True, False] 

Напълно свързана част 

Брой неврони [100, 250, 500, 750, 1000] 

Използване на dropout [True, False] 

Dropout p [0.1, 0.2, 0.3, 0.4, 0.5] 

Всички слоеве използват ReLU за активационна функция. Стъпката на конволюционните 

слоеве е 1, а допълването е „valid“. Използва се max-pooling с фиксиран размер (2), стъпка (2) и 

валидно допълване. Последният слой представлява softmax слой. Обучението се извършва чрез 

минимизиране на функцията на кръстосана ентропия, използвайки алгоритъма Adam. 

За оценяване на най-добрите модели, получени от еволюционния процес, се използват 

следните метрики: точност (accuracy), прецизност (precision), пълнота (recall), специфичност 

(specificity) и F1 оценка (F1 score). 

Използвани масиви от данни и обработка 
Предложеният еволюционен метод е експериментално валидиран върху три общодостъпни 

масива от данни за разпознаване на човешка дейност: WISDM Actitracker, Smartphone-Based 

Recognition of Human Activities and Postural Transitions Dataset и PAMAP2. Всеки масив е разделен 

на обучаващо, валидационно и тестово множество. Експериментите са повторени 10 пъти. 

Експериментални резултати за масива WISDM Actitracker 
Оптималните архитектури обикновено съдържат 4–5 конволюционни слоя, често с max-

pooling и 2–3 напълно свързани слоя, обикновено с размер на слоевете 500 или 750 неврона. 

Dropout се използва в около половината случаи (най-често p = 0.3). 

Получените резултати по F1 и точност (таблица 4.3) показват конкурентно представяне, 

сравнимо със съвременни ръчно проектирани модели (таблица 4.4). 

Матрицата на объркване (фиг. 4.3) показва отлично разпознаване на Sitting (без грешки) и 

много висока точност за Walking, Jogging, и Standing (F1 ≥ 0.95). Най-трудни за класификация са 

Upstairs и Downstairs, с F1 около 0.8, поради сходство между тях. Средната F1 оценка е 0.9194 ± 

0.0711. 
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Таблица 4.3. Средни стойности спрямо класовете на F1 score и точност за най-добрата архитектура 

от всяко експериментално изпълнение върху масива WISDM Actitracker. 

Изпълнение Средна F1 оценка ± σ Средна точност ± σ 

1 0.9126  ±  0.0889 0.9780  ±  0.0164 

2 0.9027  ±  0.0954 0.9746  ±  0.0180 

3 0.8724  ±  0.0989 0.9687  ±  0.0187 

4 0.9123  ±  0.0918 0.9778  ±  0.0169 

5 0.9010  ±  0.0821 0.9762  ±  0.0149 

6 0.9194  ±  0.0779 0.9790  ±  0.0149 

7 0.8891  ±  0.0933 0.9734  ±  0.0173 

8 0.8999  ±  0.0935 0.9755  ±  0.0170 

9 0.8905  ±  0.0909 0.9746  ±  0.0157 

10 0.8836  ±  0.1116 0.9702  ±  0.0218 

 
Таблица 4.4. Сравнение с други методи използващи масива от данни WISDM Actitracker. 

Модел Точност (%) 

DBN 98.23 

CNN 96.88 

CNN 98.2 

CNN (предложен метод) 96.87 – 97.90 

 

 
Фигура 4.3. Средна матрица на объркване спрямо 10 обучаващи повторения за най-добрата 

архитектура от експериментално изпълнение №6 върху масива WISDM Actitracker. 

Експериментални резултати за масива Smartphone-Based Recognition of Human Activities and 

Postural Transitions Dataset 
Повечето оптимални архитектури имат 4–5 конволюционни слоя, обикновено последвани от 

max-pooling. Обикновено се използва един напълно свързан слой, често с 500 или 750 неврони, 

като в около половината случаи е приложен dropout (най-често p = 0.1).  

Резултатите (таблица 4.7) показват, че еволюираните архитектури, демонстрират висока 

ефективност, превъзхождайки значително някои съвременни дълбоки архитектури, използващи 

същия масив от данни (таблица 4.8). 
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Таблица 4.7. Средни F1 score и точност спрямо класовете на най-добрата архитектура от всяко 

експериментално изпълнение върху Smartphone-Based Recognition of Human Activities and Postural 

Transitions Dataset. 

Изпълнение Средна F1 оценка ± σ Средна точност ± σ 

1 0.9307  ±  0.0894 0.9751  ±  0.0332 

2 0.9296  ±  0.0882 0.9748  ±  0.0328 

3 0.9208  ±  0.0995 0.9717  ±  0.0365 

4 0.9243  ±  0.0972 0.9728  ±  0.0362 

5 0.9225  ±  0.1003 0.9722  ±  0.0373 

6 0.9231  ±  0.0974 0.9725  ±  0.0357 

7 0.9223  ±  0.1062 0.9719  ±  0.0393 

8 0.9293  ±  0.0913 0.9746  ±  0.0340 

9 0.9225  ±  0.1010 0.9721  ±  0.0375 

10 0.9334  ±  0.0841 0.9761  ±  0.0313 

 

Таблица 4.8. Сравнение с други методи използващи масива от данни Smartphone-Based Recognition 

of Human Activities and Postural Transitions Dataset. 

Модел Точност (%) 

2D CNN+SVM 94.49 

1D CNN 94.79 

1D CNN (предложен метод) 97.17 – 97.61 

Моделът разпознава laying, walking, walking_downstairs и walking_upstairs (фиг. 4.5) с много 

висока точност (F1 > 0.97). Най-чести грешки има при разграничаване между sitting и standing (F1 

малко над 0.8). Средната F1 оценка е 0.9334 ± 0.0841. 

Фигура 4.5. Средна стойност спрямо 10 обучаващи повторения на най-добрата архитектура от 

експериментално изпълнение №10 върху Smartphone-Based Recognition of Human Activities and 

Postural Transitions Dataset. 
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Експериментални резултати върху масива PAMAP2 
Най-добрите архитектури обикновено включват 3–6 конволюционни слоя, понякога с max-

pooling и 2 или 4 напълно свързани слоя, най-често със 100 неврони и използване на dropout (най-

често p = 0.4 и 0.5). Таблица 4.11 показва добрата ефективност на тези архитектури. 

Таблица 4.11. Средни стойности спрямо класовете за F1 оценка и точност на най-добрата 

архитектура от всяко експериментално изпълнение върху масива PAMAP2. 

Изпълнение Средна F1 оценка ± σ Средна точност ± σ 

1 0.7184  ±  0.1836 0.9404  ±  0.0285 

2 0.6829 ±  0.1693 0.9310  ±  0.0266 

3 0.6867  ±  0.2293 0.9289  ±  0.0441 

4 0.6536  ±  0.2261 0.9267  ±  0.0310 

5 0.7387  ±  0.1999 0.9432  ±  0.0345 

6 0.6965  ±  0.2113 0.9369  ±  0.0338 

7 0.7117  ±  0.2295 0.9363  ±  0.0412 

8 0.7008  ±  0.1885 0.9344  ±  0.0346 

9 0.6985  ±  0.2362 0.9345  ±  0.0404 

10 0.6819  ±  0.1798 0.9272  ±  0.0356 

Моделът има най-големи затруднения при разпознаването на клас lying (фиг. 4.6), като често 

го бърка със sitting или standing. Също така обърква ascending stairs с descending stairs и vacuum 

cleaning с ironing. Най-добре се класифицира walking, а ironing – сравнително точно. Средната F1 

оценка е 0.7387 ± 0.1999. 

Фигура 4.6. Средна матрица на объркване спрямо 10 обучаващи повторения на най-добрата 

архитектура от експериментално изпълнение №5 върху масива PAMAP2. 

Допълнително експериментално тестване 
Проведени са два допълнителни експеримента върху масива WISDM Actitracker: 

 Случайно търсене: получените средни резултати (F1 = 0.8838 ± 0.0254, Accuracy = 0.9706 ± 

0.0061) са по-ниски и по-нестабилни в сравнение с основния еволюционен експеримент. 

 Еволюционно търсене, базирано единствено на мутация: резултатите (F1 = 0.8861 ± 0.0243, 

Accuracy = 0.9715 ± 0.0062) са близки, но по-ниски и с по-големи вариации между 

изпълненията спрямо пълния еволюционен подход с кръстосване. Това показва, че 
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използването на модифицираната стратегия за кръстосване допринася за по-стабилен и 

надежден оптимизационен процес. 

4.5. Изводи към четвърта глава  

По-важните изводи и резултати, получени в четвърта глава на дисертационния труд могат да 

бъдат обобщени както следва: 

 Разпознаването на човешки дейности продължава да бъде трудна задача поради множество 

проблеми при проектирането на модели за автоматизирано разпознаване: една и съща дейност 

може да бъде изпълнена по различни начини от различни хора; различни дейности могат да бъдат 

много подобни от гледна точка на активациите на сензорите.  

 Повечето научни изследвания за решаване на тази задача са свързани с разпознаването на 

малък брой сравнително прости дейности, извършвани от единствен потребител. Освен това, 

използваните множества данни често са небалансирани, което намалява точността при 

разпознаването на някои дейности.  

 Представянето на системата за разпознаване на дейности силно зависи от използваните 

характеристики. Някои дълбоки НМ, като конволюционните НМ, предоставят възможност за 

автоматично извличане на подходящи характеристики и показват по-добри експериментални 

резултати. 

 Използване на неподходяща конволюционна мрежа за съответната задача може да доведе до 

значително влошаване на цялостното представяне на модела. Ръчното проектиране на архитектури 

е бавен и трудоемък процес, който обикновено изисква значителни специализирани знания.  

 Автоматизирането на търсенето на подходящи архитектури може значително да улесни 

процеса на оптимизация и да позволи по-широкото използване на дълбоки мрежи, както от 

научната общност, така и от IT индустрията. В научни изследвания са предложени редица 

различни варианти за автоматично оптимизиране на конволюционни архитектури за 

разпознаването на човешки дейности, в това число използване на обучение с утвърждение, както и 

различни метаевристични подходи. 

 В дисертационния труд е предложен метод за автоматична оптимизация на архитектурата на 

конволюционни НМ за разпознаване на човешки дейности, при който еволюиционния процес 

започва от прости архитектури, които постепенно могат да бъдат усложнявани чрез добавянето на 

нови слоеве. 

 Предложеният генетичен алгоритъм за еволюционно базиран дизайн на конволюционни НМ 

за разпознаване на човешка дейност използва модифицирано кръстосване за решения с различна 

дължина и адаптивна мутация с три равновероятни стратегии за модифициране на слой, добавяне 

на слой и премахване на слой от архитектурата на НМ. 

 Резултатите от експерименталната оценка на еволюционно базирания дизайн на 

конволюционни НМ за разпознаване на човешка дейност за масива WISDM Actitracker са близки 

до представянето на други дълбоки архитектури, използващи същия масив от данни, докато за 

масива Smartphone-Based Recognition of Human Activities and Postural Transitions Dataset 

резултатите са значително по-добри в сравнение с други дълбоки архитектури. 

 Предложеният еволюционно базиран подход показва по-постоянни резултати от случайното 

търсене и еволюционното търсене само с мутация, като по този начин осигурява надежден подход 

за дизайн на конволюционни НМ за разпознаване на човешки дейности. 

ГЛАВА 5. ПРОСТРАНСТВЕНО-ТЕМПОРАЛЕН НЕВРОНАЛЕН 

МОДЕЛ ЗА ПРОГНОЗИРАНЕ НА ЗАМЪРСЯВАНЕ НА ВЪЗДУХА 

Пета глава представя предложен в дисертационното изследване хибриден пространствено-

темпорален дълбок модел базиран на конволюционна НМ и LSTM мрежа за прогнозиране на 

замърсяването на въздуха с автоматичен подбор на входни променливи и оптимизация на 

хиперпараметрите на модела. Предложена е също и хибридна стратегия за попълване на 

липсващите стойности в използваните множества данни за обучение на модела. 

5.1. Същност на задачата за прогнозиране на замърсяване на въздуха 

Замърсяването на въздуха представлява наличие в атмосферата на определени вещества в 

концентрации, достатъчни да предизвикат неблагоприятно въздействие върху растителния и 

животинския свят, както и върху околната среда. Замърсителите се характеризират с разнообразен 
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химичен състав, свойства и произход. Сред тях се открояват праховите части с аеродинамичен 

размер под 2.5 μm (PM2.5), които са свързани с респираторни, сърдечно-съдови заболявания и 

преждевременна смърт. 

Прогнозирането на качеството на въздуха предоставя ключова информация за предприемане 

на своевременни мерки както от държавни институции, така и от отделни граждани. 

Съвременните модели за прогнозиране на замърсяването на въздуха могат да бъдат разделени 

на два основни типа: 

 Детерминистични модели - симулират атмосферни процеси, но са сложни и тежки. 

 Статистически модели - основават се на анализ на зависимости в наличните данни, по-

прости, по-леки и по-лесни за имплементиране. 

Рекурентните НМ са ефективни за моделиране на времеви зависимости, но страдат от 

проблема с изчезващия градиент. LSTM мрежите преодоляват този недостатък чрез използване на 

паметови клетки, което им позволява да улавят дългосрочни зависимости и ги прави широко 

използвани в прогнозиране на замърсяването на въздуха. Хибридните модели, комбиниращи CNN 

и LSTM, придобиват все по-голяма популярност в моделирането на качеството на въздуха, като 

често водят до по-висока точност спрямо чисти LSTM архитектури. 

За успешното представяне на един статистически модел за прогнозиране на замърсяването на 

въздуха трябва да бъдат решени някои важни проблеми: 

 Липсващи стойности - преди модела да бъде обучен е необходимо запълване на 

липсващите данни, като изборът на подходящ метод зависи от тяхното количество и 

особености. 

 Подбор на входни променливи - селектиране на релевантни характеристики и изключване 

на излишни такива е определящо за доброто представяне на модела. 

 Включване на пространствена информация - включването на данни от съседни райони има 

възможност значително да подобри представянето на модела. 

 Оптимизация на модела - автоматизиране на оптимизацията може значително да подобри и 

улесни процеса в сравнение с често използвания подход „проба–грешка“. 

5.2. Методи за прогнозиране на замърсяване на въздуха 

Запълване на липсващи стойности 
Линейната интерполация като метод за запълване на липсващи стойности се представя добре 

при кратки интервали с липсващи стойности, но с нарастване на интервала ефективността ѝ спада, 

като при по-дълги интервали по-точни са хибридните методи. 

Подбор на входни променливи 
Използването на различни подходи за намиране на оптимално подмножество от входни 

променливи, води до подобряване на представянето на моделите за прогнозиране на 

замърсяването на въздуха. 

Оптимизиране на хиперпараметрите на модела 
Ръчното определяне на хиперпараметрите на модела често е неефективно, поради което 

множество изследователи предпочитат автоматизирани подходи за оптимизация като grid search, 

случайно търсене и генетични алгоритми, които водят до по-добри модели. 

Пространствено-темпорални модели 
Вземането предвид на пространствена информация от съседни области, обикновено чрез 

хибридни структури, значително подобрява получените прогнози от моделите. 

5.3. Пространствено-темпорален невронален модел за прогнозиране на замърсяване 

на въздуха 

В дисертационния труд е предложен хибриден пространствено-темпорален дълбок модел 

(CNN–LSTM) за прогнозиране на замърсяването на въздуха с автоматичен подбор на входни 

променливи, оптимизация на хиперпараметрите и хибридна стратегия за попълване на липсващи 

данни. 

За експериментална оценка е използван общодостъпен масив – Beijing Multi-Site Air-Quality 

Data Dataset, съдържащ данни за замърсители и метеорологични променливи от 12 станции за 

периода 2013–2017 г. 
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Предварителна обработка на данните 
Запълване на липсващи стойности 

При анализа на данните е установено наличие на големи интервали с липсващи данни, поради 

което е предложен хибриден метод за запълване на липсващи стойности: 

 малки интервали (до 20 последователни липсващи стойности) с липсващи данни се запълват 

чрез линейна интерполация; 

 големи интервали (над 20) се запълват чрез изчисляване на средна стойност между последната 

налична стойност и усреднена стойност за съответния час от съответния ден и месец, като се 

използват данни от другите години, за които има налични валидни измервания. 

Нормализация и разделяне на масива на части 

Данните са нормализирани с Robust Scaler, част от библиотеката Scikit-learn за Python и 

разделени на обучаващо, валидационно и тестово множество по години за гарантиране на 

адекватно отразяване на сезонни и годишни вариации. 

Подбор на входни характеристики 
В дисертационния труд се предлага стратегия за подбор на входни променливи чрез 

генериране на 50 случайни входни конфигурации и оптимизиране на модел за всяка една от тях 

чрез случайно търсене с по 50 генерирани случайни решения. Всяка конфигурация се обучава за 5 

епохи върху обучаващото множество и се оценява върху валидационното множество чрез MAE. 

Най-добрата конфигурация, получена чрез случайното търсене, включва следните променливи: 

PM2.5, PM10, SO2, налягане, точка на оросяване, количество валеж, посока на вятъра и скорост на 

вятъра. 

Пространствено-темпорален модел  
Предложеният пространствено-темпорален модел представлява хибридна архитектура, 

комбинираща 2D CNN и LSTM мрежа. Моделът се състои от две основни компоненти: 

 конволюционна част, която автоматично извлича пространствени характеристики; 

 LSTM част, ползваща извлечените характеристики за моделиране на времеви зависимости. 

Моделът е предназначен за прогнозиране на концентрацията на PM2.5 за следващата времева 

стъпка (в конкретния случай – следващия час) за дадена станция, като отчита информация и от 

околни станции, позволявайки моделиране на пространствено-темпорални зависимости. 

Входните данни за конволюционната част представляват изображения с размер 25×25 

пиксела, центрирани върху станцията за която се прави прогноза и кодиращи: 

 стойността на определена променлива за конкретен момент от време както за целевата 

станция, така и за съседните станции; 

 относителните позиции на станциите в пространството. 

Стойностите на определена променлива за всички станции, включени в изображението, се 

представят като окръжности с център, местоположението на станцията в изображението, и радиус 

r, пропорционален на стойността на променливата за съответната станция: 

varmax xr=r   (5.2) 

st

p

max
N

s
=r  (5.3) 

където xvar е нормализираната стойност на съответната променлива, sp е броя пиксели на една 

страна от изображението (25), а Nst е броят станции влизащи в околността на целевата станция. 

На всички пиксели, попадащи в дадената окръжност, се присвоява стойност 1; при 

припокриване на окръжности стойностите на пикселите се сумират. В последствие, получените 

стойности за всички пиксели се нормализират. На фиг. 5.2 е представено примерно входно 

изображение. 

Оптимизиране на архитектурата 
В много изследвания архитектурите на моделите за прогнозиране на замърсяването на въздуха 

се оптимизират чрез подход „проба и грешка“, поради което в настоящата дисертация се предлага 

автоматизиран подход за оптимизация на архитектурите на НМ, както и на други хиперпараметри, 

чрез генетичен алгоритъм с модифициран оператор за кръстосване, позволяващ работа с решения 

с различна дължина. За отделните станции се оптимизират отделни модели. Качеството (фитнес) 
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на конкретно решение се оценява чрез MAE, като моделът се обучава 5 епохи върху обучаващото 

множество данни и се тества върху валидационното множество. 

 
Фигура 5.2. Примерно входно изображение с размера на околността 0.6 за PM2.5 на 29 юни 2015 в 0 

часа за целева станция Dongsi и околни близки станции. 

Представяне на решения 

Решенията се състоят от три компонента: конволюционна, LSTM и глобална част (таблица 

5.2). Конволюционната и LSTM части се състоят от определен брой слоеве, всеки от които се 

характеризира с дадени параметри. 

Таблица 5.2. Възможни стойности на оптимизираните хиперпараметри. 

 Хиперпараметър Възможни стойности 

Конволюционна част 

Брой филтри [16, 32, 64, 128, 256] 

Размер на филтъра [2, 3, 4, 5, 6, 7, 8, 9] 

Включване на max-pooling слой [True, False] 

LSTM част 

Брой LSTM елементи [25, 50, 100, 150, 200, 250] 

Използване на dropout [True, False] 

Dropout p [0.1, 0.2, 0.3, 0.4, 0.5] 

Глобална част 
Размер на околността (νnorm) 

[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9, 1] 
Размер прозорец назад във 

времето 
[1, 2, 3, 4, 5, 6, 7, 8] 

Глобалната част съдържа два параметъра: 

 Нормализиран размер на околност (νnorm) - определящ големината на околността (ν) около 

целевата станция за прогнозиране: 

dy)(dx,ν=ν norm 2max  (5.4) 

)xx,x(x=dx centermaxmincenter max  (5.5) 

)yy,y(y=dy centermaxmincenter max  (5.6) 

където νnorm заема възможни стойности от 0 до 1, xcenter и ycenter са координатите на целевата 

станция, a xmin, xmax, ymin и ymax са съответно минималните и максималните координати по x и y 

измежду всички 12 станции. Географската дължина се използва за x, а ширината – за y, без 

допълнителни трансформации. 

Околността представлява квадрат, центриран върху станцията, като в изображението се 

включват всички станции, чиито координати попадат в този квадрат. По-малки стойности на νnorm 

включват само най-близките станции, докато по-големи стойности позволяват включването на по-

отдалечени станции. 

 Размер на прозореца за наблюдение назад във времето – определя броя на предходните 

времеви стъпки (в случая часове), които се използват като входни данни за модела. 

Избор и обучение на най-добра архитектура 

След приключване на еволюционната процедура най-добрата архитектура от последната 

генерация се избира за финално обучение върху обединеното обучаващо и валидационно 
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множество за 100 епохи, като тестването и оценката се извършват върху тестовото множество. За 

надеждна оценка на представянето всяко обучение се повтаря 10 независими пъти. 

Метрики за оценка 

За оценка на представянето на най-добрите архитектури се ползват следните стандартни 

метрики: средна абсолютна грешка (MAE), корен от средната квадратична грешка (RMSE) и 

коефициент на детерминация (R2). 

5.4. Експериментално тестване и резултати 

Експериментална постановка 
Моделите са реализирани с Keras и обучени с Adam, като за активационна функция е 

използвана ReLU. Конволюционните слоеве са дефинирани със стъпка (stride) (1, 1) и valid 

padding, а max-pooling слоевете са с размер (2, 2), стъпка (2, 2) и valid padding. Еволюцията е 

извършена с популация 20 за 50 поколения с елитизъм със стойност 2, а максималният брой 

конволюционни и LSTM слоеве е съответно 10 и 5. 

Експериментите са проведени върху три предварително подбрани станции – Dongsi, Wanliu и 

Changping, като за всяка станция е оптимизиран отделен модел, а оптимизацията е повторена три 

пъти. 

В допълнение към основния експеримент са проведени допълнителни експерименти върху 

станция Wanliu: (1) включване на вече обучените модели в различни ансамбли; (2) валидиране на 

предложената хибридна стратегия за запълване на липсващи стойности; (3) валидиране на 

различни компоненти от предложения пространствено-темпорален модел. 

Резултати от основен експеримент 
Получените резултати (таблици 5.3, 5.4 и 5.5) показват, че за всяка станция са намерени 

подходящи архитектури, които демонстрират стабилно и добро представяне, като най-добри 

резултати са постигнати за станция Wanliu. 

Направеното сравнение с резултати от други изследвания, използващи същия масив данни за 

прогнозиране на PM2.5 за трите станции (таблици 5.6, 5.7 и 5.8) показва, че в повечето случаи 

предложеният в дисертационния труд модел демонстрира съизмерими резултати с повечето други 

съвременни модели, като за станция Wanliu представянето е съпоставимо с някои други дълбоки 

модели. 

Таблица 5.3. Резултати за метрики за оценка на най-добрата архитектура за всяко 

експериментално изпълнение за станция Dongsi. 

Изпълнение MAE RMSE R2 

1 17.866  ±  0.672 33.274  ±  1.351 0.853  ±  0.012 

2 19.128  ±  0.863 31.326  ±  2.637 0.869  ±  0.023 

3 18.446  ±  0.797 30.207  ±  2.076 0.878  ±  0.017 

 

Таблица 5.4. Резултати за метрики за оценка на най-добрата архитектура за всяко 

експериментално изпълнение за станция Wanliu. 

Изпълнение MAE RMSE R2 

1 15.370  ±  0.586 25.165  ±  1.652 0.904  ±  0.013 

2 16.753  ±  0.384 26.446  ±  0.707 0.894  ±  0.006 

3 15.675  ±  0.375 24.714  ±  0.751 0.908  ±  0.006 

 

Таблица 5.5. Резултати за метрики за оценка на най-добрата архитектура за всяко 

експериментално изпълнение за станция Changping.  

Изпълнение MAE RMSE R2 

1 15.673  ±  0.374 29.429  ±  1.155 0.869  ±  0.010 

2 16.085  ±  0.384 31.382  ±  1.502 0.850  ±  0.014 

3 15.161  ±  0.199 27.394  ±  1.165 0.886  ±  0.010 
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Таблица 5.6. Сравнение с други модели за станция Dongsi и масива данни Beijing Multi-Site Air-

Quality Data Dataset за прогнозиране на PM2.5. 

Модел MAE RMSE 

FBProphet 15.1 20.5 

ARIMA 14.1 19.8 

LSTM 13.2 21.3 

CNN 16.1 22.0 

CNN-LSTM 9.653 17.706 

 

Таблица 5.7. Сравнение с други модели за станция Wanliu и масива данни Beijing Multi-Site Air-

Quality Data Dataset за прогнозиране на PM2.5. 

Модел MAE RMSE 

FBProphet 14.7 19.6 

ARIMA 14.2 19.3 

LSTM 15.9 23.9 

CNN 13.9 23.4 

CNN-LSTM 8.486 14.951 

 

Таблица 5.8. Сравнение с други модели за станция Changping и масива данни Beijing Multi-Site 

Air-Quality Data Dataset за прогнозиране на PM2.5. 

Модел MAE RMSE 

FBProphet 13.2 18.9 

ARIMA 13.3 19.2 

LSTM  12.7 18.8 

CNN  14.0 20.2 

CNN-LSTM 8.873 15.710 

Анализът на оптимизираните архитектури за трите станции (особено при станция Wanliu) 

показва, че най-добрите модели почти винаги използват максимален размер на околността, което 

означава включване на всички станции. Моделите използват голям брой стъпки назад във времето 

(7–8) като входна информация. Получените резултати показват ползата от включването на 

пространствена информация от възможно повече околни станции, както и използването на 

възможно най-много историческа информация. Повечето оптимизирани модели съдържат един 

конволюционен слой, обикновено с малък брой филтри и малък размер на филтъра, като около 

половината случаи включват max-pooling слой. След конволюционната част често се използват 

един или два LSTM слоя, като в около половината случаи е приложена dropout регуляризация със 

сравнително малки стойности на параметъра p (0.1, 0.2 и 0.3). 

На фигури 5.3, 5.4 и 5.5 са показани прогнозираната спрямо реалната стойност за трите 

станции за целия тестови период. Получените резултати показват, че моделите се справят добре с 

прогнозата на общите тенденции, като известни трудности се наблюдават при прогнозиране на 

пикови концентрации, особено когато пиковете са значително високи, което се вижда най-ясно за 

станция Changping (фиг. 5.5). 

Формиране на ансамбли от тренираните модели 
Проведен е допълнителен експеримент с образуване на ансамбли от вече обучени модели от 

основния експеримент чрез две стратегии: 

 ансамбъл от модели с една и съща архитектура – включва десетте независими обучения на 

най-добрата архитектура, получена от определено изпълнение на еволюционната 

оптимизация; 
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 ансамбъл с модели с различни архитектури – включва k най-добри модела от пълните 

обучения за всяко експериментално изпълнение. 

  
Фигура 5.3. Реална стойност и осреднената 

прогнозирана стойност за тестовия период за 

станция Dongsi от експериментално 

изпълнение №3. 

Фигура 5.4. Реална стойност и осреднената 

прогнозирана стойност за тестовия период за 

станция Wanliu от експериментално 

изпълнение №3. 

 
Фигура 5.5. Реална стойност и осреднената прогнозирана стойност за тестовия период за 

станция Changping от експериментално изпълнение №3. 

Резултатите от ансамблите с модели с еднаква архитектура са представени в таблици 5.12, 5.13 

и 5.14, докато резултатите от ансамблите с различни архитектури са показани в таблици 5.15, 5.16 

и 5.17. Анализът показва, че и двете стратегии подобряват резултатите спрямо отделните модели. 

В почти всички случаи ансамбълът от k най-добри модели дава по-добро представяне, като 

оптималните стойности на k са: Dongsi – 3, Wanliu – 8, Changping – 2. 

В сравнение с резултати от други изследвания ансамблите за станции Dongsi и Changping 

демонстрират подобна MAE, но по-висока RMSE, най-вероятно заради почасовите, а не дневни 

прогнози. За станция Wanliu предложените ансамбли превъзхождат резултатите от литературата. 
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Таблица 5.12. Резултати за станция Dongsi на ансамбъла съставен само от модели получени от 

десет независими обучения на най-добрата архитектура от определено оптимизационно 

изпълнение. 

Изпълнение MAE RMSE R2 

1 15.636 29.538 0.884 

2 16.652 27.136 0.902 

3 15.832 26.018 0.910 

 

Таблица 5.13. Резултати за станция Wanliu на ансамбъла съставен само от модели получени от 

десет независими обучения на най-добрата архитектура от определено оптимизационно 

изпълнение. 

Изпълнение MAE RMSE R2 

1 13.350 21.359 0.931 

2 13.835 21.843 0.928 

3 13.746 21.623 0.929 

 

Таблица 5.14. Резултати за станция Changping на ансамбъла съставен само от модели получени от 

десет независими обучения на най-добрата архитектура от определено оптимизационно 

изпълнение. 

Изпълнение MAE RMSE R2 

1 13.888 26.805 0.891 

2 14.432 28.850 0.874 

3 13.126 24.649 0.908 

 

Таблица 5.15. Резултати за станция Dongsi на ансамбли съставени от k най-добрите модели от 

всяко едно оптимизационно изпълнение. 

k MAE RMSE R2 

1 15.118 25.404 0.9144 

2 14.875 25.065 0.9167 

3 14.837 24.912 0.9177 

4 14.858 25.079 0.9166 

5 14.857 25.236 0.9156 

6 14.939 25.386 0.9146 

7 14.871 25.232 0.9156 

8 14.863 25.205 0.9158 

9 14.910 25.421 0.9143 

10 14.985 25.621 0.9130 

 

Таблица 5.16. Резултати за станция Wanliu на ансамбли съставени от k най-добрите модели от 

всяко едно оптимизационно изпълнение. 

k MAE RMSE R2 

1 13.876 21.529 0.9300 

2 13.498 21.034 0.9332 

3 13.355 20.945 0.9338 

4 13.265 20.841 0.9344 
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5 13.226 20.783 0.9348 

6 13.185 20.786 0.9348 

7 13.177 20.763 0.9349 

8 13.167 20.739 0.9351 

9 13.175 20.741 0.9351 

10 13.217 20.836 0.9345 

 

Таблица 5.17. Резултати за станция Changping на ансамбли съставени от k най-добрите модели от 

всяко едно оптимизационно изпълнение. 

k MAE RMSE R2 

1 13.859 25.052 0.9049 

2 13.454 24.928 0.9059 

3 13.391 25.000 0.9053 

4 13.384 25.140 0.9043 

5 13.351 25.308 0.9030 

6 13.375 25.473 0.9017 

7 13.401 25.665 0.9002 

8 13.436 25.839 0.8988 

9 13.475 26.031 0.8973 

10 13.514 26.275 0.8954 

Валидиране на хибридната схема за запълване на липсващи стойности 
За валидиране на предложената хибридна схема за запълване на липсващи данни са проведени 

два типа експерименти: 

 директна оценка – чрез запълване на изкуствено създадени дупки; 

 индиректна оценка – чрез представянето на модели, обучени със запълнените данни. 

Директна оценка 

Премахнати са ~5% от валидните стойности чрез генериране на случайни „дупки“ с големини 

следващи геометрично разпределение с p = 0.05. 

За запълване на липсващите стойности са използвани три стратегии: линейна интерполация, 

средна стойност между предишната налична валидна стойност и осреднена стойност за времевата 

точка, както и хибриден подход, комбиниращ двете горни стратегии. 

Всеки метод е тестван 100 независими пъти и оценен със средната стойност на R², като за 

статистическо сравнение е използван Kruskal–Wallis тест (KW). 

Хибридната стратегия за запълване на липсващи данни в повечето случаи е сравнима с 

линейната интерполация, като я превъзхожда при озон и температура, характеризиращи се с по-

изразени сезонни закономерности. Методът със средна стойност показва най-слаби резултати за 

почти всички замърсители, с изключение на озона, където превъзхожда останалите методи. 

Индиректна оценка 

Проведени са два допълнителни експеримента върху станция Changping: 

 оптимизирани са модели използващи данни, за които липсващите стойности са запълнени 

само със стратегията с линейна интерполация; 

 оптимизирани са модели използващи данни, за които липсващите стойности са запълнени 

само със стратегията със средна стойност. 

От получените резултати не се забелязват значими разлики между хибридната стратегия и 

линейната интерполация (p > 0.05 за всички метрики). Осреднената стратегия от своя страна 

показва по-слаби резултати спрямо хибридната по метриката MAE (p = 0.0014). 

Избор на входни променливи 
Проведени са два два допълнителни експеримента за оценка на предложената стратегия за 

подбор на входни променливи чрез случайно търсене: 
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 моделите използват като входни данни само данните за PM2.5; 

 моделите използват като входни данни всички налични 12 променливи.  

Получените резултати показват, че включването на допълнителни променливи подобрява 

представянето на модела (за всички метрики p << 0.05). Използването на всички променливи води 

до резултати, сходни с основния експеримент (p > 0.5 за всички метрики), но изисква значително 

повече време за обучение (средно 1.84 ч спрямо 0.84 ч при подбор на променливи чрез случайно 

търсене, p = 2.28×10⁻⁷). 

Включване на пространствена информация 
За оценка на влиянието на пространствената информация е проведен експеримент, при който 

моделите се еволюират с фиксирана големина на околността със стойност 0. Резултатите показват, 

че включването на пространствена информация от съседни станции значително подобрява 

представянето на модела (p << 0.05 за всички метрики). 

5.5. Изводи към пета глава  

По-важните изводи и резултати, получени в пета глава на дисертационния труд могат да бъдат 

обобщени както следва: 

 Замърсяването на въздуха оказва отрицателно влияние върху човешкото здраве и околната 

среда, което налага нуждата от разработване на ефективни системи за прогноза на качеството на 

въздуха, които биха позволили вземането на подходящи мерки; 

 Предложен е хибриден дълбок пространствено-темпорален модел базиран на конволюционна 

НМ и LSTM мрежа за прогнозиране на замърсяването на въздуха с автоматичен подбор на входни 

променливи и оптимизация на хиперпараметрите на модела; 

 Предложена е хибридна стратегия за запълване на липсващи стойности във времеви редове, 

която е приложена за използваните множества данни за обучение на модела; 

 Експерименталните резултати върху общодостъпен масив от данни показват, че дори и при 

ограничени изчислителни ресурси еволюираните архитектури водят до получаване на добри и 

постоянни резултати; 

 Включването на еволюираните архитектури в различни ансамбли, състоящи се от модели с 

еднакви архитектури и модели с различни архитектури допълнително подобрява резултатите като 

моделите се доближават до резултатите, получени с някои съвременни дълбоки модели, които 

използват същия масив от данни, а в някои случаи дори и ги превъзхождат; 

 Хибридната стратегия за запълване на стойности има предимства пред линейната 

интерполация, особено при данни с ясно изявена сезонност, без да отстъпва в много от останалите 

случаи; 

 Експерименталните резултати показват, че случайното търсене е проста и резултатна 

стратегия за подбор на входни променливи, а включването на пространствена информация 

подобрява значително прогнозните резултати, получени с моделите. 

ЗАКЛЮЧЕНИЕ 

Дисертационният труд е посветен на изследването и разработването на еволюционни подходи 

за автоматизирано проектиране и оптимизация на архитектури на НМ. Основната цел на 

дисертационния труд за разработване на еволюционна стратегия за oптимизиране на архитектури 

на НМ с генетични алгоритми и нейната адаптация към различни приложни области е постигната 

чрез изпълнение на комплекс от взаимносвързани изследователски задачи. Направен е 

систематичен литературен обзор върху съвременните невронно-мрежови модели и 

метаевристични алгоритми, който позволи идентифицирането на съществуващите ограничения на 

класическите методи и очерта необходимостта от разработване на нови, по-гъвкави решения. 

Анализирани са съществуващите подходи за автоматизация на проектирането на архитектури, 

като върху тази основа е предложен дизайн на еволюционна стратегия, включваща специфични 

механизми за представяне на решенията, както и модифицирани оператори за кръстосване и 

мутация. Разработената стратегия е приложена в три основни области: управление на автономни 

агенти, разпознаване на човешки дейности и прогнозиране на замърсяването на въздуха. За всяка 

от тези задачи са дефинирани съответните модели на НМ, адаптирани към спецификата на 

данните и изискванията на приложението. В резултат на проведените експерименти е 

демонстрирано, че еволюционно оптимизираните архитектури постигат по-висока ефективност в 

сравнение с ръчно проектираните модели, като същевременно намаляват необходимостта от 
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човешка експертиза и времето за настройка. По този начин е потвърдена валидността на основната 

хипотеза на дисертационния труд, че оптимални архитектури на НМ могат да бъдат определяни 

чрез метаевристични алгоритми, които използват адаптивни оператори и подходящи схеми на 

кодиране. Дисертационният труд не само потвърждава потенциала на еволюционните стратегии 

като ефективен инструмент за оптимизация на архитектури на НМ, но и създава стабилна основа 

за бъдещи изследвания и практически реализации в различни сфери на изкуствения интелект и 

машинното обучение. Постигнатите резултати имат стойност както за развитието на теоретичните 

основи на метаевристичната оптимизация на НМ в различни контексти, така и за приложението им 

в реални, сложни и динамични системи. 

ПРИНОСИ ПО ДИСЕРТАЦИОННИЯ ТРУД 

 Научни приноси: 

 Предложен е метод за оптимизация на архитектурата на НМ с използване на генетичен 

алгоритъм за еволюция и усложняване на решенията от по-прости към по-сложни, който използва 

модифициран оператор за кръстосване за решения с вариращи дължини и адаптивна мутация с три 

стратегии за промени в архитектурите на НМ; 

 Предложен е метод за еволюиране на НМ за управление на автономни агенти, който 

използва биологично вдъхновена индиректна схема на кодиране, осигуряваща възможност за 

развитие на НМ с отчитане на взаимодействията със средата с цел адаптиране на агента към 

специфична среда; 

 Предложен е метод за автоматична оптимизация на архитектурата на конволюционни НМ 

за разпознаване на човешки дейности чрез еволюционен процес, който усложнява прости 

архитектури с добавяне на нови слоеве с използване на модифицирано кръстосване за решения с 

различна дължина и адаптивна мутация с три равновероятни стратегии за модифициране на слой, 

добавяне на слой и премахване на слой от архитектурата на НМ; 

 Предложен е подход за включване на еволюирани архитектури за хибриден дълбок 

пространствено-темпорален модел за прогнозиране на замърсяването на въздуха в различни 

ансамбли, състоящи се от модели с еднакви архитектури и модели с различни архитектури. 

 Научно-приложни приноси: 

 Предложен е хибриден дълбок пространствено-темпорален модел базиран на 

конволюционна НМ и LSTM мрежа за прогнозиране на замърсяването на въздуха с автоматичен 

подбор на входни променливи и оптимизация на хиперпараметрите на модела; 

 Предложена е хибридна стратегия за запълване на липсващи стойности във времеви 

редове, която е приложена за обучение на хибридния дълбок пространствено-темпорален модел за 

прогнозиране на замърсяване на въздуха; 

 Предложена е стратегия за подбор на входни променливи при прогнозиране на 

замърсяването на въздух с хибриден дълбок пространствено-темпорален модел; 

 Предложена е стратегия за включване на пространствена информация при прогнозиране на 

замърсяването на въздух с хибриден дълбок пространствено-темпорален модел. 

 Приложни приноси: 

 Разработен е прототип за експериментално оценяване на предложената биологично 

вдъхновена индиректна схема на кодиране за еволюиране на НМ за управление на автономни 

агенти върху симулация на изкуствен свят, който показва, че с използване на проста имплицитна 

фитнес функция успешно се еволюират агенти способни да разграничават различни обекти и се 

генерират разнообразни и комплексни архитектури с малък брой параметри спрямо други 

възможни подходи за еволюиране на нервна система за управление на автономни агенти; 

 Разработен е прототип за експериментално оценяване на еволюционно базирания дизайн 

на конволюционни НМ за разпознаване на човешка дейност, който показва значително по-добри 

резултати в сравнение с други дълбоки архитектури; 

 Разработен е прототип за експериментално оценяване на предложения хибриден дълбок 

пространствено-темпорален модел за прогнозиране на замърсяването на въздуха, който показва, че 

дори и при ограничени изчислителни ресурси еволюираните архитектури водят до получаване на 

добри и постоянни резултати. 
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SUMMARY 

OPTIMIZATION OF NEURAL NETWORK ARCHITECTURES 

THROUGH EVOLUTIONARY ALGORITHMS  

Stefan Alipiev Tsokov 

 
The rapid advancement of deep learning has highlighted the need for discovering optimal neural 

network architectures. However, designing such architectures remains a complex, resource-intensive, and 

time-consuming task that demands substantial expertise and computational power. This challenge 

underscores the importance of automating and optimizing the architecture design process through the use 

of intelligent metaheuristic techniques. Evolutionary algorithms, including genetic algorithms, offer a 

promising solution, as they enable efficient exploration of large and complex architectural and parameter 

spaces without requiring direct human intervention. 

A key contribution of this research is the development of an evolutionary method that employs a 

modified crossover operator suitable for variable-length architectures, along with an adaptive mutation 

mechanism featuring three strategies: modifying, adding, and removing layers. This allows architectures 

to increase in complexity only when necessary, ensuring an optimal balance between exploration and 

exploitation. 

The proposed strategy is applied across three domains: autonomous agent control, human activity 

recognition, and air pollution forecasting. For each application, specialized neural network models were 

tailored to the specific characteristics of the data and problem requirements. This led to the development 

of: (1) a biologically inspired scheme for evolving neural networks for agent control; (2) an evolutionary 

method for automatic optimization of CNN architectures for activity recognition; and (3) a hybrid 

spatiotemporal model for air pollution forecasting that combines CNN and LSTM, with automatic 

selection of input variables, hyperparameters, and spatial information, as well as ensemble integration. 

Additionally, a hybrid data imputation strategy was proposed, demonstrating advantages over traditional 

linear interpolation methods. 

The conducted analyses and experiments demonstrate that the evolutionarily optimized architectures 

often outperform manually designed and classical methods, achieving higher accuracy, stability, and 

adaptability. In the human activity recognition task, the results are comparable to or better than those of 

modern deep models. In air pollution forecasting, the hybrid spatiotemporal models developed using the 

proposed approach perform well even with limited computational resources, while the inclusion of 

ensembles further improves effectiveness. 

In summary, the dissertation demonstrates that metaheuristic approaches and adaptive evolutionary 

strategies can successfully automate neural network architecture design, yielding efficient, interpretable, 

and applicable models. These methods provide flexibility, high levels of automation, eliminate the proxy 

gap, maintain structural validity, and establish a strong foundation for future research and real-world. 

 

 

 


